The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Structure and stability of sodium and potassium complexes of dT4G4 and dT4G4T.

The ends of eukaryotic chromosomes contain specialized structures that include DNA with multiple tandem repeats of simple sequences containing clusters of G on one strand, together with proteins which synthesize and bind to these sequences. The unit repeat in the protozoan Oxytricha with the cluster dT4G4 can form structures containing tetrads of guanine residues, referred to G4 DNA, in the presence of metal ions such as Na+ or K+. We show here that, in the presence of Na+, dT4G4 forms a tetramer with parallel strands by means of a UV cross-linking assay. In the presence of K+, two further interactions are observed: at low temperature, higher order complexes are formed, provided the 3' end of the strand is G; a single 3'T inhibits this association in dT4G4T. At high temperature, these complexes dissociate, leading to a tetramer with a different ordered structure that melts only at very high temperatures. These results suggest that the cohesive properties of DNA containing G clusters might depend on associative interactions driven by a free 3'G terminus in the presence of K+, as well as by connecting antiparallel G hairpins as has been postulated.[1]


  1. Structure and stability of sodium and potassium complexes of dT4G4 and dT4G4T. Lu, M., Guo, Q., Kallenbach, N.R. Biochemistry (1992) [Pubmed]
WikiGenes - Universities