The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Oxytricha

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on Oxytricha

  • The beta subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA [1].
  • The Oxytricha proteins are not simply C4A4-binding proteins [2].
  • Internal sequences are eliminated from genes during macronuclear development in the ciliated protozoan Oxytricha nova [3].
  • Modulation of telomerase activity by telomere DNA-binding proteins in Oxytricha [4].
  • The 4.1 kbp TBE1 elements of Oxytricha fallax and Oxytricha trifallax are deduced to transpose into a centrisymmetric target, CAnTG, and to duplicate the central AnT [5].
 

Biological context of Oxytricha

 

Anatomical context of Oxytricha

  • An enzymatic activity in crude extracts of macronuclei from the hypotrichous ciliate Oxytricha nova catalyzes the synthesis of RNA consisting of (C4A4)n using an oligodeoxynucleotide template of the telomeric sequence (dG4T4)n. Single-stranded (dG4T4)n is an effective template if it has a random sequence at its 5' end [11].
 

Associations of Oxytricha with chemical compounds

  • Presence of the 5' thymidine tail preceding the Oxytricha telomeric repeat has no apparent effect on the hairpin secondary structure [12].
  • This complex is between a dimeric antiparallel G-quadruplex formed from the Oxytricha nova telomeric DNA sequence d(GGGGTTTTGGGG), and a di-substituted aminoalkylamido acridine compound [13].
  • The unit repeat in the protozoan Oxytricha with the cluster dT4G4 can form structures containing tetrads of guanine residues, referred to G4 DNA, in the presence of metal ions such as Na+ or K+ [14].
  • The rapid exchange of thymine N3 imino sites indicates that thymine quartets are not stabilized in Oxytricha quadruplexes [15].
  • During the purification of another Cd-linking compound, we were able to demonstrate that the H protein precursor of glycine cleavage is present in Oxytricha [16].
 

Gene context of Oxytricha

  • POT1 belongs to a family of oligonucleotide-binding (OB)-fold-containing proteins that include Oxytricha nova TEBP, Cdc13, and spPot1, which specifically recognize telomeric single-stranded DNA (ssDNA) [17].
  • We also demonstrate that a fusion protein consisting of the N-terminal region of Cdc13 and the C-terminal region of Stm1 (which shows similarity to the beta-subunit of the telomere binding complex in Oxytricha) could complement a cdc13 disruptant [18].
  • Native telomeric chromatin isolated from Oxytricha contains both types of complexes [19].
  • Mobile elements bounded by C4A4 telomeric repeats in Oxytricha fallax [20].
  • Polymerase chain reaction analysis of micronuclear DNA of the related species, Oxytricha trifallax, shows that the actin gene has an unorthodox arrangement in this species also [6].
 

Analytical, diagnostic and therapeutic context of Oxytricha

  • Using Raman spectroscopy, we have determined the dependence of the interquadruplex equilibrium of the telomeric repeat of Oxytricha nova, upon solution concentrations of Na+ and K+ [21].

References

  1. The beta subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Fang, G., Cech, T.R. Cell (1993) [Pubmed]
  2. Telomere proteins: specific recognition and protection of the natural termini of Oxytricha macronuclear DNA. Gottschling, D.E., Zakian, V.A. Cell (1986) [Pubmed]
  3. Internal sequences are eliminated from genes during macronuclear development in the ciliated protozoan Oxytricha nova. Klobutcher, L.A., Jahn, C.L., Prescott, D.M. Cell (1984) [Pubmed]
  4. Modulation of telomerase activity by telomere DNA-binding proteins in Oxytricha. Froelich-Ammon, S.J., Dickinson, B.A., Bevilacqua, J.M., Schultz, S.C., Cech, T.R. Genes Dev. (1998) [Pubmed]
  5. Developmental precise excision of Oxytricha trifallax telomere-bearing elements and formation of circles closed by a copy of the flanking target duplication. Williams, K., Doak, T.G., Herrick, G. EMBO J. (1993) [Pubmed]
  6. Reordering of nine exons is necessary to form a functional actin gene in Oxytricha nova. Greslin, A.F., Prescott, D.M., Oka, Y., Loukin, S.H., Chappell, J.C. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  7. Inverted terminal repeats are added to genes during macronuclear development in Oxytricha nova. Boswell, R.E., Klobutcher, L.A., Prescott, D.M. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  8. The molecular basis of nuclear genetic code change in ciliates. Lozupone, C.A., Knight, R.D., Landweber, L.F. Curr. Biol. (2001) [Pubmed]
  9. The evolutionary scrambling and developmental unscrambling of germline genes in hypotrichous ciliates. Prescott, D.M. Nucleic Acids Res. (1999) [Pubmed]
  10. Binding linkage in a telomere DNA-protein complex at the ends of Oxytricha nova chromosomes. Buczek, P., Orr, R.S., Pyper, S.R., Shum, M., Kimmel, E., Ota, I., Gerum, S.E., Horvath, M.P. J. Mol. Biol. (2005) [Pubmed]
  11. DNA primase and the replication of the telomeres in Oxytricha nova. Zahler, A.M., Prescott, D.M. Nucleic Acids Res. (1989) [Pubmed]
  12. A hairpin conformation for the 3' overhang of Oxytricha nova telomeric DNA. Laporte, L., Thomas, G.J. J. Mol. Biol. (1998) [Pubmed]
  13. Structure of a G-quadruplex-ligand complex. Haider, S.M., Parkinson, G.N., Neidle, S. J. Mol. Biol. (2003) [Pubmed]
  14. Structure and stability of sodium and potassium complexes of dT4G4 and dT4G4T. Lu, M., Guo, Q., Kallenbach, N.R. Biochemistry (1992) [Pubmed]
  15. Structure and dynamics of interstrand guanine association in quadruplex telomeric DNA. Miura, T., Thomas, G.J. Biochemistry (1995) [Pubmed]
  16. Evidence of a cadmium-thionein and the glycine cleavage system in Oxytricha granulifera. Irato, P., Piccinni, E., James, P., Ammermann, D. J. Eukaryot. Microbiol. (1995) [Pubmed]
  17. PTOP interacts with POT1 and regulates its localization to telomeres. Liu, D., Safari, A., O'Connor, M.S., Chan, D.W., Laegeler, A., Qin, J., Songyang, Z. Nat. Cell Biol. (2004) [Pubmed]
  18. STM1, a gene which encodes a guanine quadruplex binding protein, interacts with CDC13 in Saccharomyces cerevisiae. Hayashi, N., Murakami, S. Mol. Genet. Genomics (2002) [Pubmed]
  19. Assembly and self-association of oxytricha telomeric nucleoprotein complexes. Raghuraman, M.K., Cech, T.R. Cell (1989) [Pubmed]
  20. Mobile elements bounded by C4A4 telomeric repeats in Oxytricha fallax. Herrick, G., Cartinhour, S., Dawson, D., Ang, D., Sheets, R., Lee, A., Williams, K. Cell (1985) [Pubmed]
  21. A phase diagram for sodium and potassium ion control of polymorphism in telomeric DNA. Miura, T., Benevides, J.M., Thomas, G.J. J. Mol. Biol. (1995) [Pubmed]
 
WikiGenes - Universities