The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A specific endoplasmic reticulum export signal drives transport of stem cell factor ( Kitl) to the cell surface.

Stem cell factor, also known as Kit ligand ( Kitl), belongs to the family of dimeric transmembrane growth factors. Efficient cell surface presentation of Kitl is essential for the migration, proliferation, and survival of melanocytes, germ cells, hemopoietic stem cells, and mastocytes. Here we demonstrate that intracellular transport of Kitl to the cell surface is driven by a motif in the cytoplasmic tail that acts independently of the previously described basolateral sorting signal. Transport of Kitl to the cell surface is controlled at the level of the endoplasmic reticulum (ER) and requires a C-terminal valine residue positioned at a distance of 19-36 amino acids from the border between the transmembrane and cytoplasmic domains. Deletion or substitution of the valine with other hydrophobic amino acids results in ER accumulation and reduced cell surface transport of Kitl at physiological expression levels. When these mutant proteins are overexpressed in the ER, they are transported by bulk flow to the cell surface albeit at lower efficiency. A fusion construct between Kitl and the green fluorescent protein- labeled extracellular domain of a temperature-sensitive mutant of vesicular stomatitis virus G protein revealed the valine-dependent recruitment into coat protein complex II-coated ER exit sites and vesicular ER to Golgi transport in living cells. Thus the C-terminal valine defines a specific ER export signal in Kitl. It is responsible for the capture of Kitl at coat protein complex II-coated ER exit sites, leading to subsequent cell surface transport under physiological conditions.[1]

References

 
WikiGenes - Universities