Spatiotemporal analysis of event-related fMRI data using partial least squares.
Partial least squares (PLS) has proven to be a important multivariate analytic tool for positron emission tomographic and, more recently, event-related potential ( ERP) data. The application to ERP incorporates the ability to analyze space and time together, a feature that has obvious appeal for event-related functional magnetic resonance imaging (fMRI) data. This paper presents the extension of spatiotemporal PLS (ST-PLS) to fMRI, explaining the theoretical foundation and application to an fMRI study of auditory and visual perceptual memory. Analysis of activation effects with ST-PLS was compared with conventional univariate random effects analysis, showing general consensus for both methods, but several unique observations by ST-PLS, including enhanced statistical power. The application of ST-PLS for assessment of task-dependent brain-behavior relationships is also presented. Singular features of ST-PLS include (1) no assumptions about the shape of the hemodynamic response functions (HRFs); (2) robust statistical assessment at the image level through permutation tests; (3) protection against outlier influences at the voxel level through bootstrap resampling; (4) flexible analytic configurations that allow assessment of activation difference, brain-behavior relations, and functional connectivity. These features enable ST-PLS to act as an important complement to other multivariate and univariate approaches used in neuroimaging research.[1]References
- Spatiotemporal analysis of event-related fMRI data using partial least squares. McIntosh, A.R., Chau, W.K., Protzner, A.B. Neuroimage (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg