The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Genetic enhancement of ventricular contractility protects against pressure-overload-induced cardiac dysfunction.

In response to pressure-overload, cardiac function deteriorates and may even progress to fulminant heart failure and death. Here we questioned if genetic enhancement of left ventricular (LV) contractility protects against pressure-overload. Transgenic (TG) mice with cardiac-restricted overexpression (66-fold) of the alpha(1A)-adrenergic receptor (alpha(1A)-AR) and their non-TG (NTG) littermates, were subjected to transverse aorta constriction (TAC)-induced pressure-overload for 12 weeks. TAC-induced hypertrophy was similar in the NTG and TG mice but the TG mice were less likely to die of heart failure compared to the non-TG animals (P <0.05). The hypercontractile phenotype of the TG mice was maintained over the 12-week period following TAC with LV fractional shortening being significantly greater than in the NTG mice (42+/-2 vs 29+/-1%, P <0.01). In the TG animals, 11-week beta-AR-blockade with atenolol neither induced hypertrophy nor suppressed the hypercontractile phenotype. The hypertrophic response to pressure-overload was not altered by cardiac alpha(1A)-AR overexpression. Moreover, the inotropic phenotype of alpha(1A)-AR overexpression was well maintained under conditions of pressure overload. Although the functional decline in contractility with pressure overload was similar in the TG and NTG animals, given that contractility was higher before TAC in the TG mice, their LV function was better preserved and heart failure deaths were fewer after induction of pressure overload.[1]


  1. Genetic enhancement of ventricular contractility protects against pressure-overload-induced cardiac dysfunction. Du, X.J., Fang, L., Gao, X.M., Kiriazis, H., Feng, X., Hotchkin, E., Finch, A.M., Chaulet, H., Graham, R.M. J. Mol. Cell. Cardiol. (2004) [Pubmed]
WikiGenes - Universities