The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Hypertrophy


Psychiatry related information on Hypertrophy


High impact information on Hypertrophy


Chemical compound and disease context of Hypertrophy


Biological context of Hypertrophy


Anatomical context of Hypertrophy


Gene context of Hypertrophy


Analytical, diagnostic and therapeutic context of Hypertrophy


  1. The creatine kinase system in normal and diseased human myocardium. Ingwall, J.S., Kramer, M.F., Fifer, M.A., Lorell, B.H., Shemin, R., Grossman, W., Allen, P.D. N. Engl. J. Med. (1985) [Pubmed]
  2. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. Spirito, P., Bellone, P., Harris, K.M., Bernabo, P., Bruzzi, P., Maron, B.J. N. Engl. J. Med. (2000) [Pubmed]
  3. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Arber, S., Hunter, J.J., Ross, J., Hongo, M., Sansig, G., Borg, J., Perriard, J.C., Chien, K.R., Caroni, P. Cell (1997) [Pubmed]
  4. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes. Wettschureck, N., Rütten, H., Zywietz, A., Gehring, D., Wilkie, T.M., Chen, J., Chien, K.R., Offermanns, S. Nat. Med. (2001) [Pubmed]
  5. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Pai, R., Soreghan, B., Szabo, I.L., Pavelka, M., Baatar, D., Tarnawski, A.S. Nat. Med. (2002) [Pubmed]
  6. Met66 in the brain-derived neurotrophic factor (BDNF) precursor is associated with anorexia nervosa restrictive type. Ribasés, M., Gratacòs, M., Armengol, L., de Cid, R., Badía, A., Jiménez, L., Solano, R., Vallejo, J., Fernández, F., Estivill, X. Mol. Psychiatry (2003) [Pubmed]
  7. Plasticity of galaninergic fibers following neurotoxic damage within the rat basal forebrain: initial observations. de Lacalle, S., Kulkarni, S., Mufson, E.J. Exp. Neurol. (1997) [Pubmed]
  8. Congenital muscular dystrophy associated with calf hypertrophy, microcephaly and severe mental retardation in three Italian families: evidence for a novel CMD syndrome. Villanova, M., Mercuri, E., Bertini, E., Sabatelli, P., Morandi, L., Mora, M., Sewry, C., Brockington, M., Brown, S.C., Ferreiro, A., Maraldi, N.M., Toda, T., Guicheney, P., Merlini, L., Muntoni, F. Neuromuscul. Disord. (2000) [Pubmed]
  9. Malondialdehyde and antioxidant enzymes in children with obstructive adenotonsillar hypertrophy. Doğruer, Z.N., Unal, M., Eskandari, G., Pata, Y.S., Akbaş, Y., Cevik, T., Cimen, M.Y. Clin. Biochem. (2004) [Pubmed]
  10. The Transcriptional Coactivator CAMTA2 Stimulates Cardiac Growth by Opposing Class II Histone Deacetylases. Song, K., Backs, J., McAnally, J., Qi, X., Gerard, R.D., Richardson, J.A., Hill, J.A., Bassel-Duby, R., Olson, E.N. Cell (2006) [Pubmed]
  11. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Vega, R.B., Matsuda, K., Oh, J., Barbosa, A.C., Yang, X., Meadows, E., McAnally, J., Pomajzl, C., Shelton, J.M., Richardson, J.A., Karsenty, G., Olson, E.N. Cell (2004) [Pubmed]
  12. Regulation of armadillo by a Drosophila APC inhibits neuronal apoptosis during retinal development. Ahmed, Y., Hayashi, S., Levine, A., Wieschaus, E. Cell (1998) [Pubmed]
  13. Nitric oxide regulates cell proliferation during Drosophila development. Kuzin, B., Roberts, I., Peunova, N., Enikolopov, G. Cell (1996) [Pubmed]
  14. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Sadoshima, J., Xu, Y., Slayter, H.S., Izumo, S. Cell (1993) [Pubmed]
  15. Cardiac structure and function in children with human immunodeficiency virus infection treated with zidovudine. Lipshultz, S.E., Orav, E.J., Sanders, S.P., Hale, A.R., McIntosh, K., Colan, S.D. N. Engl. J. Med. (1992) [Pubmed]
  16. Increased proton conductance pathway in brown adipose tissue mitochondria of rats exhibiting diet-induced thermogenesis. Brooks, S.L., Rothwell, N.J., Stock, M.J., Goodbody, A.E., Trayhurn, P. Nature (1980) [Pubmed]
  17. Autoregulation in rats with transplanted supernumerary kidneys. Gittes, R.F., Rist, M., Treves, S., Biewiner, A. Nature (1980) [Pubmed]
  18. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Yussman, M.G., Toyokawa, T., Odley, A., Lynch, R.A., Wu, G., Colbert, M.C., Aronow, B.J., Lorenz, J.N., Dorn, G.W. Nat. Med. (2002) [Pubmed]
  19. Adiponectin and adiponectin receptors. Kadowaki, T., Yamauchi, T. Endocr. Rev. (2005) [Pubmed]
  20. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Kubota, N., Terauchi, Y., Miki, H., Tamemoto, H., Yamauchi, T., Komeda, K., Satoh, S., Nakano, R., Ishii, C., Sugiyama, T., Eto, K., Tsubamoto, Y., Okuno, A., Murakami, K., Sekihara, H., Hasegawa, G., Naito, M., Toyoshima, Y., Tanaka, S., Shiota, K., Kitamura, T., Fujita, T., Ezaki, O., Aizawa, S., Kadowaki, T. Mol. Cell (1999) [Pubmed]
  21. Evidence for direct local effect of angiotensin in vascular hypertrophy. In vivo gene transfer of angiotensin converting enzyme. Morishita, R., Gibbons, G.H., Ellison, K.E., Lee, W., Zhang, L., Yu, H., Kaneda, Y., Ogihara, T., Dzau, V.J. J. Clin. Invest. (1994) [Pubmed]
  22. Dissociation of glomerular hypertrophy, cell proliferation, and glomerulosclerosis in mouse strains heterozygous for a mutation (Os) which induces a 50% reduction in nephron number. He, C., Esposito, C., Phillips, C., Zalups, R.K., Henderson, D.A., Striker, G.E., Striker, L.J. J. Clin. Invest. (1996) [Pubmed]
  23. Targeted disruption of the neuronal nitric oxide synthase gene. Huang, P.L., Dawson, T.M., Bredt, D.S., Snyder, S.H., Fishman, M.C. Cell (1993) [Pubmed]
  24. Direct, convergent hypersensitivity of calcium-activated force generation produced by hypertrophic cardiomyopathy mutant alpha-tropomyosins in adult cardiac myocytes. Michele, D.E., Albayya, F.P., Metzger, J.M. Nat. Med. (1999) [Pubmed]
  25. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Semsarian, C., Wu, M.J., Ju, Y.K., Marciniec, T., Yeoh, T., Allen, D.G., Harvey, R.P., Graham, R.M. Nature (1999) [Pubmed]
  26. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Musarò, A., McCullagh, K.J., Naya, F.J., Olson, E.N., Rosenthal, N. Nature (1999) [Pubmed]
  27. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Justice, R.W., Zilian, O., Woods, D.F., Noll, M., Bryant, P.J. Genes Dev. (1995) [Pubmed]
  28. A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Hayashi, M., Imanaka-Yoshida, K., Yoshida, T., Wood, M., Fearns, C., Tatake, R.J., Lee, J.D. Nat. Med. (2006) [Pubmed]
  29. The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Buitrago, M., Lorenz, K., Maass, A.H., Oberdorf-Maass, S., Keller, U., Schmitteckert, E.M., Ivashchenko, Y., Lohse, M.J., Engelhardt, S. Nat. Med. (2005) [Pubmed]
  30. Activation and function of cyclin T-Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. Sano, M., Abdellatif, M., Oh, H., Xie, M., Bagella, L., Giordano, A., Michael, L.H., DeMayo, F.J., Schneider, M.D. Nat. Med. (2002) [Pubmed]
  31. Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. Choukroun, G., Hajjar, R., Kyriakis, J.M., Bonventre, J.V., Rosenzweig, A., Force, T. J. Clin. Invest. (1998) [Pubmed]
  32. Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2. Pellieux, C., Foletti, A., Peduto, G., Aubert, J.F., Nussberger, J., Beermann, F., Brunner, H.R., Pedrazzini, T. J. Clin. Invest. (2001) [Pubmed]
  33. Growth hormone, the insulin-like growth factor system, and the kidney. Feld, S., Hirschberg, R. Endocr. Rev. (1996) [Pubmed]
  34. Hypoxia alters the subcellular distribution of protein kinase C isoforms in neonatal rat ventricular myocytes. Goldberg, M., Zhang, H.L., Steinberg, S.F. J. Clin. Invest. (1997) [Pubmed]
  35. Patterns of mRNA expression during early cell growth differ in kidney epithelial cells destined to undergo compensatory hypertrophy versus regenerative hyperplasia. Norman, J.T., Bohman, R.E., Fischmann, G., Bowen, J.W., McDonough, A., Slamon, D., Fine, L.G. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  36. Dehydroepiandrosterone (DHEA) prevents and reverses chronic hypoxic pulmonary hypertension. Bonnet, S., Dumas-de-La-Roque, E., Bégueret, H., Marthan, R., Fayon, M., Dos Santos, P., Savineau, J.P., Baulieu, E.E. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  37. Induction of myocardial insulin-like growth factor-I gene expression in left ventricular hypertrophy. Donohue, T.J., Dworkin, L.D., Lango, M.N., Fliegner, K., Lango, R.P., Benstein, J.A., Slater, W.R., Catanese, V.M. Circulation (1994) [Pubmed]
WikiGenes - Universities