Definition, objectives, and evaluation of natural attenuation.
Natural attenuation offers large benefits to owners and managers of contaminated sites, but often raises strong objections from those who live and work near a site and are asked to assume most of the long-term risks. Part of the controversy comes about because published definitions of natural attenuation do not identify a realistic end-point objective, and they also are ambiguous about the naturally occurring processes that can achieve the objective. According to guidance from the U.S. National Research Council ( NRC 2000), destruction and strong immobilization are the naturally occurring processes that achieve a realistic objective: containing the contaminant relatively nears its source, thereby minimizing exposure risks. The strategy for obtaining solid evidence that the objective is being achieved requires measurements that establish a cause-and-effect relationship between contaminant loss and a destruction or strong-immobilization reaction. The cause-and-effect relationship is best documented with reaction footprints, which typically are concentration changes in reactants or products of the destruction or immobilization reaction. MTBE presents a contemporary example in which footprint evidence for biodegradation is especially crucial, since aerobic biodegradation of MTBE requires special conditions not present at all sites: a high availability of dissolved oxygen and bacteria expressing particular oxygenase enzymes.[1]References
- Definition, objectives, and evaluation of natural attenuation. Rittmann, B.E. Biodegradation (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg