The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The nuclear factor kappa B inhibitor parthenolide restores ICI 182,780 (Faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant breast cancer cells.

The molecular mechanisms underlying the acquisition of resistance to the antiestrogen Faslodex are poorly understood, although enhanced expression and activity of nuclear factor kappaB (NFkappaB) have been implicated as a critical element of this phenotype. The purpose of this study was to elucidate the mechanism by which NFkappaB up-regulation contributes to Faslodex resistance and to determine whether pharmacologic inhibition of NFkappaB by the small molecule parthenolide could restore Faslodex-mediated suppression of cell growth. Basal expression of multiple NFkappaB-related molecules in MCF7-derived LCC1 (antiestrogen-sensitive) and LCC9 (antiestrogen-resistant) breast cancer cells was determined, and cells were treated with Faslodex or parthenolide. The effect of these drugs either singly or in combination was assessed by cell proliferation, estrogen receptor (ER)-dependent transcriptional activation, cell cycle analysis, and apoptosis assays. Expression of the p65 NFkappaB subunit and the upstream NFkappaB regulator IkappaB kinase gamma/NFkappaB essential modulator were increased in the resistant MCF7/LCC9 cells (P=0.001 and 0.04, respectively). Whereas MCF7/LCC9 cells were unresponsive to Faslodex alone, parthenolide effectively inhibited MCF7/LCC9 cell proliferation and the combination of Faslodex and parthenolide resulted in a 4-fold synergistic reduction in cell growth (P=0.03). This corresponded to a restoration of Faslodex-induced apoptosis (P=0.001), with no observable changes in ER-dependent transcription or cell cycle phase distribution. Because parthenolide has shown safety in Phase I clinical trials, these findings have direct clinical relevance and provide support for the design of clinical studies combining antiestrogens and parthenolide in ER-positive breast cancer.[1]


WikiGenes - Universities