Degradation of neohesperidin dihydrochalcone by human intestinal bacteria.
The degradation of neohesperidin dihydrochalcone by human intestinal microbiota was studied in vitro. Human fecal slurries converted neohesperidin dihydrochalcone anoxically to 3-(3-hydroxy-4-methoxyphenyl)propionic acid or 3-(3,4-dihydroxyphenyl)propionic acid. Two transient intermediates were identified as hesperetin dihydrochalcone 4'-beta-d-glucoside and hesperetin dihydrochalcone. These metabolites suggest that neohesperidin dihydrochalcone is first deglycosylated to hesperetin dihydrochalcone 4'-beta-d-glucoside and subsequently to the aglycon hesperetin dihydrochalcone. The latter is hydrolyzed to the corresponding 3-(3-hydroxy-4-methoxyphenyl)propionic acid and probably phloroglucinol. Eubacterium ramulus and Clostridium orbiscindens were not capable of converting neohesperidin dihydrochalcone. However, hesperetin dihydrochalcone 4'-beta-d-glucoside was converted by E. ramulus to hesperetin dihydrochalcone and further to 3-(3-hydroxy-4-methoxyphenyl)propionic acid, but not by C. orbiscindens. In contrast, hesperetin dihydrochalcone was cleaved to 3-(3-hydroxy-4-methoxyphenyl)propionic acid by both species. The latter reaction was shown to be catalyzed by the phloretin hydrolase from E. ramulus.[1]References
- Degradation of neohesperidin dihydrochalcone by human intestinal bacteria. Braune, A., Engst, W., Blaut, M. J. Agric. Food Chem. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg