The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Isosalipurpol     (E)-3-(4-hydroxyphenyl)-1- (2,4,6...

Synonyms: AC1NQXT1, CHEMBL338066, SureCN443275, CHEBI:15413, MEGxp0_001759, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of phloretin

  • Here we demonstrate that phloretin and exifone, dipolar compounds that decrease the effective negative charge of membranes, prevent association of Abeta1-40 and Abeta25-35 to negatively charged lipid vesicles and Abeta induced cell toxicity [1].
  • The effects of phloretin, H2DIDS (4,4'-diisothiocyano-1,2-diphenylethane-2,2'-disulfonate) and SO4-2 on anion transport in Ehrlich ascites tumor cells was studied in an effort to determine whether Cl- and SO4-2 share a common transport mechanism [2].
  • The phloretin hydrolase was heterologously expressed in Escherichia coli and purified [3].
  • Cloning and expression of a phloretin hydrolase gene from Eubacterium ramulus and characterization of the recombinant enzyme [3].
  • Studies were conducted in the sensitive and multidrug resistant human breast cancer cell lines MCF-7 and MDA435/LCC6 and examined the effects of the flavonoids biochanin A, morin, phloretin, and silymarin on daunomycin (DNM) accumulation and doxorubicin cytotoxicity [4].
 

High impact information on phloretin

 

Chemical compound and disease context of phloretin

 

Biological context of phloretin

  • Both processes were involved in apoptotic death, as demonstrated by the observation that the Cl- channel blocker phloretin inhibited both the staurosporine-evoked Cl- current and AVD, and preserved cell viability [15].
  • When the energy barrier for ion transport was lowered in mitochondria, by increasing the membrane potential, or in liposomes, by adding phloretin, the Hill coefficients decreased to lower integer numbers [16].
  • Transfection experiments with this spliced variant restore amiloride-insensitive, phloretin-sensitive SLC activity [17].
  • These results are consistent with the hypothesis that phloretin decreases the intrinsic positive internal membrane potential but does not modify to a great extent the potential energy minima at the membrane interfaces [18].
  • The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique [19].
 

Anatomical context of phloretin

 

Associations of phloretin with other chemical compounds

  • Chalcone synthase [naringenin-chalcone synthase; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing), E.C. 2.3.1.74], the key enzyme of flavonoid pathways that was believed to be soluble, has been localized on ribosome-bearing endoplasmic reticulum membranes in the epidermis of buckwheat (Fagopyrum esculentum M.) hypocotyls [25].
  • The thermodynamics of interactions between phloretin and a phosphatidylcholine (PC) vesicle membrane are characterized using equilibrium spectrophotometric titration, stopped-flow, and temperature-jump techniques [26].
  • Experiments carried out in cells loaded in the presence of nystatin to contain either only K or only Na show that the ouabain-insensitive, phloretin-inhibited Li movements into or out of human red cells are stimulated by Na on the trans side and inhibited by Na on the cis side of the red cell membrane [27].
  • The half-inhibition concentrations at [Cl(o)] = 150 mM in control cells (Ki,o) and covalently DIDS-treated cells (Ki,c) were: DIDS, Ki,c = 73 nM; DNDS, Ki,o = 6.3 microM, Ki,c = 22 microM; phloretin, Ki,o = 19 microM, Ki,c = 17 microM; salicylate, Ki,o = 4 mM, Ki,c = 8 mM; Killer III, Ki,o = 10 microM, Ki,c = 10 microM [28].
  • In high stress perfusions, the ratios of the "passive" to the "active" components determined using phloretin and phloridzin were 0.94 and 0.95, respectively; cytochalasin B gave 0.95 [29].
 

Gene context of phloretin

 

Analytical, diagnostic and therapeutic context of phloretin

References

  1. Inhibition of the electrostatic interaction between beta-amyloid peptide and membranes prevents beta-amyloid-induced toxicity. Hertel, C., Terzi, E., Hauser, N., Jakob-Rotne, R., Seelig, J., Kemp, J.A. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  2. Chloride and sulfate transport in Ehrlich ascites tumor cells: evidence for a common mechanism. Levinson, C. J. Cell. Physiol. (1978) [Pubmed]
  3. Cloning and expression of a phloretin hydrolase gene from Eubacterium ramulus and characterization of the recombinant enzyme. Schoefer, L., Braune, A., Blaut, M. Appl. Environ. Microbiol. (2004) [Pubmed]
  4. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. Zhang, S., Morris, M.E. J. Pharmacol. Exp. Ther. (2003) [Pubmed]
  5. Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Nakayama, T., Yonekura-Sakakibara, K., Sato, T., Kikuchi, S., Fukui, Y., Fukuchi-Mizutani, M., Ueda, T., Nakao, M., Tanaka, Y., Kusumi, T., Nishino, T. Science (2000) [Pubmed]
  6. Molecular cloning and characterization of the vasopressin-regulated urea transporter of rat kidney collecting ducts. Shayakul, C., Steel, A., Hediger, M.A. J. Clin. Invest. (1996) [Pubmed]
  7. Reversible inhibition of urea exchange in rat hepatocytes. Effros, R.M., Jacobs, E., Hacker, A., Ozker, K., Murphy, C. J. Clin. Invest. (1993) [Pubmed]
  8. Evidence from oocyte expression that the erythrocyte water channel is distinct from band 3 and the glucose transporter. Zhang, R., Alper, S.L., Thorens, B., Verkman, A.S. J. Clin. Invest. (1991) [Pubmed]
  9. Oleate uptake by cardiac myocytes is carrier mediated and involves a 40-kD plasma membrane fatty acid binding protein similar to that in liver, adipose tissue, and gut. Sorrentino, D., Stump, D., Potter, B.J., Robinson, R.B., White, R., Kiang, C.L., Berk, P.D. J. Clin. Invest. (1988) [Pubmed]
  10. Studies of renal injury IV: The GLUT1 gene protects renal cells from cyclosporine A toxicity. Dominguez, J.H., Soleimani, M., Batiuk, T. Kidney Int. (2002) [Pubmed]
  11. Sodium-dependent lithium ion efflux from murine neuroblastoma and rat glioma cells: a minor pathway for efflux of lithium ions. Richelson, E., Johnson, M. Psychopharmacology (Berl.) (1984) [Pubmed]
  12. Identification of chicken liver glucose transporter. Wang, M.Y., Tsai, M.Y., Wang, C. Arch. Biochem. Biophys. (1994) [Pubmed]
  13. Phosphorylated derivatives of phloretin inhibit cyclic AMP accumulation in neuronal and glial tumor cells in culture. Ortmann, R., Nutto, D., Jackisch, R. Naunyn Schmiedebergs Arch. Pharmacol. (1978) [Pubmed]
  14. Effects of flavonoids on enzyme secretion and endocytosis in normal and mucolipidosis II fibroblasts. Vladutiu, G.D., Middleton, E. Life Sci. (1986) [Pubmed]
  15. Apoptosis induced by staurosporine in ECV304 cells requires cell shrinkage and upregulation of Cl- conductance. Porcelli, A.M., Ghelli, A., Zanna, C., Valente, P., Ferroni, S., Rugolo, M. Cell Death Differ. (2004) [Pubmed]
  16. On the mechanism by which bupivacaine conducts protons across the membranes of mitochondria and liposomes. Sun, X., Garlid, K.D. J. Biol. Chem. (1992) [Pubmed]
  17. Alternative splicing of NHE-1 mediates Na-Li countertransport and associates with activity rate. Zerbini, G., Maestroni, A., Breviario, D., Mangili, R., Casari, G. Diabetes (2003) [Pubmed]
  18. Phloretin-induced changes in ion transport across lipid bilayer membranes. Melnik, E., Latorre, R., Hall, J.E., Tosteson, D.C. J. Gen. Physiol. (1977) [Pubmed]
  19. Kinetics of phloretin binding to phosphatidylcholine vesicle membranes. Verkman, A.S., Solomon, A.K. J. Gen. Physiol. (1980) [Pubmed]
  20. Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Moshelion, M., Becker, D., Biela, A., Uehlein, N., Hedrich, R., Otto, B., Levi, H., Moran, N., Kaldenhoff, R. Plant Cell (2002) [Pubmed]
  21. Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Bakker, B.M., Walsh, M.C., ter Kuile, B.H., Mensonides, F.I., Michels, P.A., Opperdoes, F.R., Westerhoff, H.V. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  22. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid. Vera, J.C., Rivas, C.I., Zhang, R.H., Farber, C.M., Golde, D.W. Blood (1994) [Pubmed]
  23. Sodium-lithium exchange in sarcolemmal vesicles from canine superior mesenteric artery. Kahn, A.M., Allen, J.C., Cragoe, E.J., Zimmer, R., Shelat, H. Circ. Res. (1988) [Pubmed]
  24. Involvement of aquaporin 9 in osteoclast differentiation. Aharon, R., Bar-Shavit, Z. J. Biol. Chem. (2006) [Pubmed]
  25. Biochemical, immunological, and immunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranes. Hrazdina, G., Zobel, A.M., Hoch, H.C. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  26. A stepwise mechanism for the permeation of phloretin through a lipid bilayer. Verkman, A.S., Solomon, A.K. J. Gen. Physiol. (1982) [Pubmed]
  27. Lithium transport pathways in human red blood cells. Pandey, G.N., Sarkadi, B., Haas, M., Gunn, R.B., Davis, J.M., Tosteson, D.C. J. Gen. Physiol. (1978) [Pubmed]
  28. Kinetics of residual chloride transport in human red blood cells after maximum covalent 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid binding. Gasbjerg, P.K., Funder, J., Brahm, J. J. Gen. Physiol. (1993) [Pubmed]
  29. The active and passive components of glucose absorption in rat jejunum under low and high perfusion stress. Helliwell, P.A., Kellett, G.L. J. Physiol. (Lond.) (2002) [Pubmed]
  30. Selectivity of the renal collecting duct water channel aquaporin-3. Echevarría, M., Windhager, E.E., Frindt, G. J. Biol. Chem. (1996) [Pubmed]
  31. The flavonoid phloretin suppresses stimulated expression of endothelial adhesion molecules and reduces activation of human platelets. Stangl, V., Lorenz, M., Ludwig, A., Grimbo, N., Guether, C., Sanad, W., Ziemer, S., Martus, P., Baumann, G., Stangl, K. J. Nutr. (2005) [Pubmed]
  32. Cytochrome P450 1A1 expression and activity in Caco-2 cells: modulation by apple juice extract and certain apple polyphenols. Pohl, C., Will, F., Dietrich, H., Schrenk, D. J. Agric. Food Chem. (2006) [Pubmed]
  33. Functional and molecular characterization of the human neutral solute channel aquaporin-9. Tsukaguchi, H., Weremowicz, S., Morton, C.C., Hediger, M.A. Am. J. Physiol. (1999) [Pubmed]
  34. Phloretin-induced apoptosis in B16 melanoma 4A5 cells and HL60 human leukemia cells. Kobori, M., Iwashita, K., Shinmoto, H., Tsushida, T. Biosci. Biotechnol. Biochem. (1999) [Pubmed]
  35. Thyroid hormones in tissues from fetal and adult rats. Morreale de Escobar, G., Calvo, R., Escobar del Rey, F., Obregón, M.J. Endocrinology (1994) [Pubmed]
  36. Phloretin differentially inhibits volume-sensitive and cyclic AMP-activated, but not Ca-activated, Cl(-) channels. Fan, H.T., Morishima, S., Kida, H., Okada, Y. Br. J. Pharmacol. (2001) [Pubmed]
  37. Probe of specific interaction between a simplified synthetic glycopolymer and erythrocytes as mediated by a glucose transporter (GLUT) on a cell membrane. Park, K.H., Na, K., Akaike, T., Lee, K.C. J. Biomed. Mater. Res. (2002) [Pubmed]
  38. Chloride channel inhibition prevents ROS-dependent apoptosis induced by ischemia-reperfusion in mouse cardiomyocytes. Wang, X., Takahashi, N., Uramoto, H., Okada, Y. Cell. Physiol. Biochem. (2005) [Pubmed]
  39. Interaction of phloretin with membranes: on the mode of action of phloretin at the water-lipid interface. Cseh, R., Hetzer, M., Wolf, K., Kraus, J., Bringmann, G., Benz, R. Eur. Biophys. J. (2000) [Pubmed]
 
WikiGenes - Universities