The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Is it homogeneous or heterogeneous catalysis? Compelling evidence for both types of catalysts derived from [Rh(eta5-C5Me5)Cl2]2 as a function of temperature and hydrogen pressure.

Addressed herein is the 20+ year-old question of whether the true benzene and cyclohexene hydrogenation catalysts derived from the organometallic precursor [Rh(eta5-C5Me5)Cl2]2, 1, are homogeneous or heterogeneous. The methodology employed is that developed earlier (Lin, Y.; Finke, R. G. Inorg Chem. 1994, 33, 4891, "A More General Approach to Distinguishing Homogeneous from Heterogeneous Catalysis..."). The kinetic evidence especially, but also the metal product (nanoclusters plus bulk metal), Hg0 poisoning and other experiments, provide compelling evidence that Rh0 nanoclusters are the true benzene hydrogenation heterogeneous catalyst derived from [Rh(eta5-C5Me5)Cl2]2, 1, at the required more vigorous conditions of 50-100 degrees C and 50 atm H2. However, the same methods reveal that the cyclohexene hydrogenation catalyst derived from 1 at the milder conditions of 22 degrees C and 3.7 atm H2 is a nonnanocluster, homogeneous catalyst, most likely the previously identified complex, [Rh(eta5-C5Me5)(H)2(solvent)] (Gill, D. S.; White, C.; Maitlis, P. M J. C. S. Dalton Trans. 1978, 617). In short, the present results solve the two-decade-old problem of identifying the true benzene and cyclohexene hydrogenation catalysts derived from [Rh(eta5-C5Me5)Cl2]2. Perhaps most significant is the demonstration that the methodology employed has the ability to identify both heterogeneous and homogeneous catalysts from the same catalyst precursor.[1]

References

 
WikiGenes - Universities