The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Catalysis


Psychiatry related information on Catalysis

  • gamma-Secretase is a membrane protein complex with an unusual aspartyl protease activity that catalyses the regulated intramembranous cleavage of the beta-amyloid precursor protein (APP) to release the Alzheimer's disease (AD)-associated amyloid beta-peptide (Abeta) and the APP intracellular domain (AICD) [6].
  • The generation of a latency period by albumin appears to be due to its ability to sequester the palmitic acid newly released by the phospholipase A2 catalysis [7].

High impact information on Catalysis

  • Sustained catalysis results from the ability of NOS2 to attach calmodulin without dependence on elevated Ca2+ [8].
  • The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes [9].
  • To achieve this level of rate enhancement, the HDV ribozymes have been proposed to employ several catalytic strategies that include the use of metal ions, intrinsic binding energy, and a novel example of general acid-base catalysis with a cytosine side chain acting as a proton donor or acceptor [10].
  • In this review, we examine how the structures of these enzymes relate mechanistically to cyclooxygenase and peroxidase catalysis, and how differences in the structure of PGHS-2 confer on this isozyme differential sensitivity to COX-2 inhibitors [11].
  • Catalysis by metal-activated hydroxide in zinc and manganese metalloenzymes [12].

Chemical compound and disease context of Catalysis


Biological context of Catalysis

  • Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity [18].
  • The structure and biochemical experiments show that RanGAP does not act through an arginine finger, that the basic machinery for fast GTP hydrolysis is provided exclusively by Ran and that correct positioning of the catalytic glutamine is essential for catalysis [19].
  • Protein farnesyltransferase (FTase) catalyses the attachment of a farnesyl lipid group to numerous essential signal transduction proteins, including members of the Ras superfamily [20].
  • The first 38 amino-acid residues of porcine PPIase and of bovine cyclophilin are identical and the two proteins both have a relative molecular mass of about 17,000 (ref. 7). The catalysis of prolyl isomerization in oligopeptides and of protein folding by PPIase are strongly inhibited in the presence of low levels of CsA [21].
  • The enzyme cytochrome c nitrite reductase catalyses the six-electron reduction of nitrite to ammonia as one of the key steps in the biological nitrogen cycle, where it participates in the anaerobic energy metabolism of dissimilatory nitrate ammonification [22].

Anatomical context of Catalysis

  • SR proteins are highly phosphorylated in vivo, a modification that is required for their function in spliceosome assembly and splicing catalysis [23].
  • Elongation factor-1 alpha (EF-1 alpha), an essential component of the eukaryotic translational apparatus, is a GTP-binding protein that catalyses the binding of aminoacyl-transfer RNAs to the ribosome [24].
  • Cytochrome c oxidase catalyses the 4-electron reduction of dioxygen to water and translocates protons vectorially across the inner mitochondrial membrane [25].
  • Chylomicrons formed in the intestinal mucosa during the absorption of the products of digestion, are processed by the peripheral circulation by lipoprotein lipase, which catalyses the breakdown of triglycerides in chylomicrons to free fatty acids and glycerol [26].
  • We report here light scattering studies of magnetically orientated frog rod outer segments which show that a molecule of R* catalyses the activation of a molecule of T in about 1 ms [27].

Associations of Catalysis with chemical compounds

  • Serine proteases: structure and mechanism of catalysis [28].
  • This interaction fixes the lid segment in an open conformation, inserts an arginine side chain into the ATP binding pocket to disable catalysis, and prevents trans-activating interaction of the N domains [29].
  • Binding by ubiquitin aldehyde induces a drastic conformational change in the active site that realigns the catalytic triad residues for catalysis [30].
  • An Asp residue projecting into this cleft is essential for catalysis, and it governs binding specificity for mechanism-based inhibitors [31].
  • Furthermore, we show how the cofactor AdoMet binds to this domain and present biochemical data supporting the role of invariant residues in catalysis, binding of AdoMet, and interactions with the peptide substrate [32].

Gene context of Catalysis


Analytical, diagnostic and therapeutic context of Catalysis


  1. RecBCD enzyme is a bipolar DNA helicase. Dillingham, M.S., Spies, M., Kowalczykowski, S.C. Nature (2003) [Pubmed]
  2. Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor. Lebioda, L., Stec, B. Nature (1988) [Pubmed]
  3. Biochemistry: biosynthesis of an organofluorine molecule. O'Hagan, D., Schaffrath, C., Cobb, S.L., Hamilton, J.T., Murphy, C.D. Nature (2002) [Pubmed]
  4. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Guo, F., Gopaul, D.N., van Duyne, G.D. Nature (1997) [Pubmed]
  5. Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue ganciclovir. Littler, E., Stuart, A.D., Chee, M.S. Nature (1992) [Pubmed]
  6. Reconstitution of gamma-secretase activity. Edbauer, D., Winkler, E., Regula, J.T., Pesold, B., Steiner, H., Haass, C. Nat. Cell Biol. (2003) [Pubmed]
  7. Induction of a latency period in the time-course of phospholipase A2 action on dipalmitoylphosphatidylcholine liposomes in the gel phase. González-Martínez, M.T., Fernández, M.S. Biochem. Biophys. Res. Commun. (1988) [Pubmed]
  8. Nitric oxide and macrophage function. MacMicking, J., Xie, Q.W., Nathan, C. Annu. Rev. Immunol. (1997) [Pubmed]
  9. The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Banerjee, R., Ragsdale, S.W. Annu. Rev. Biochem. (2003) [Pubmed]
  10. Catalytic strategies of the hepatitis delta virus ribozymes. Shih, I.H., Been, M.D. Annu. Rev. Biochem. (2002) [Pubmed]
  11. Cyclooxygenases: structural, cellular, and molecular biology. Smith, W.L., DeWitt, D.L., Garavito, R.M. Annu. Rev. Biochem. (2000) [Pubmed]
  12. Catalysis by metal-activated hydroxide in zinc and manganese metalloenzymes. Christianson, D.W., Cox, J.D. Annu. Rev. Biochem. (1999) [Pubmed]
  13. Mutations in the active site of Escherichia coli phosphofructokinase. Hellinga, H.W., Evans, P.R. Nature (1987) [Pubmed]
  14. Crystal structure of a dUTPase. Cedergren-Zeppezauer, E.S., Larsson, G., Nyman, P.O., Dauter, Z., Wilson, K.S. Nature (1992) [Pubmed]
  15. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Guan, K.L., Dixon, J.E. Science (1990) [Pubmed]
  16. The metallobiology of Alzheimer's disease. Bush, A.I. Trends Neurosci. (2003) [Pubmed]
  17. Pseudomonas and neutrophil products modify transferrin and lactoferrin to create conditions that favor hydroxyl radical formation. Britigan, B.E., Edeker, B.L. J. Clin. Invest. (1991) [Pubmed]
  18. Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity. Kennedy, A.K., Haniford, D.B., Mizuuchi, K. Cell (2000) [Pubmed]
  19. RanGAP mediates GTP hydrolysis without an arginine finger. Seewald, M.J., Körner, C., Wittinghofer, A., Vetter, I.R. Nature (2002) [Pubmed]
  20. Reaction path of protein farnesyltransferase at atomic resolution. Long, S.B., Casey, P.J., Beese, L.S. Nature (2002) [Pubmed]
  21. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T., Schmid, F.X. Nature (1989) [Pubmed]
  22. Structure of cytochrome c nitrite reductase. Einsle, O., Messerschmidt, A., Stach, P., Bourenkov, G.P., Bartunik, H.D., Huber, R., Kroneck, P.M. Nature (1999) [Pubmed]
  23. Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Kanopka, A., Mühlemann, O., Petersen-Mahrt, S., Estmer, C., Ohrmalm, C., Akusjärvi, G. Nature (1998) [Pubmed]
  24. Elongation factor-1 alpha gene determines susceptibility to transformation. Tatsuka, M., Mitsui, H., Wada, M., Nagata, A., Nojima, H., Okayama, H. Nature (1992) [Pubmed]
  25. Ferryl and hydroxy intermediates in the reaction of oxygen with reduced cytochrome c oxidase. Han, S., Ching, Y.C., Rousseau, D.L. Nature (1990) [Pubmed]
  26. The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Beisiegel, U., Weber, W., Ihrke, G., Herz, J., Stanley, K.K. Nature (1989) [Pubmed]
  27. Millisecond activation of transducin in the cyclic nucleotide cascade of vision. Vuong, T.M., Chabre, M., Stryer, L. Nature (1984) [Pubmed]
  28. Serine proteases: structure and mechanism of catalysis. Kraut, J. Annu. Rev. Biochem. (1977) [Pubmed]
  29. The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Roe, S.M., Ali, M.M., Meyer, P., Vaughan, C.K., Panaretou, B., Piper, P.W., Prodromou, C., Pearl, L.H. Cell (2004) [Pubmed]
  30. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Hu, M., Li, P., Li, M., Li, W., Yao, T., Wu, J.W., Gu, W., Cohen, R.E., Shi, Y. Cell (2002) [Pubmed]
  31. Structural basis for the excision repair of alkylation-damaged DNA. Labahn, J., Schärer, O.D., Long, A., Ezaz-Nikpay, K., Verdine, G.L., Ellenberger, T.E. Cell (1996) [Pubmed]
  32. Crystal structure and functional analysis of the histone methyltransferase SET7/9. Wilson, J.R., Jing, C., Walker, P.A., Martin, S.R., Howell, S.A., Blackburn, G.M., Gamblin, S.J., Xiao, B. Cell (2002) [Pubmed]
  33. Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Goldberg, J. Cell (1999) [Pubmed]
  34. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Kurumbail, R.G., Stevens, A.M., Gierse, J.K., McDonald, J.J., Stegeman, R.A., Pak, J.Y., Gildehaus, D., Miyashiro, J.M., Penning, T.D., Seibert, K., Isakson, P.C., Stallings, W.C. Nature (1996) [Pubmed]
  35. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Petukhova, G., Stratton, S., Sung, P. Nature (1998) [Pubmed]
  36. A product of the prune locus of Drosophila is similar to mammalian GTPase-activating protein. Teng, D.H., Engele, C.M., Venkatesh, T.R. Nature (1991) [Pubmed]
  37. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Bischoff, F.R., Ponstingl, H. Nature (1991) [Pubmed]
  38. Site-directed mutagenesis reveals role of mobile arginine residue in lactate dehydrogenase catalysis. Clarke, A.R., Wigley, D.B., Chia, W.N., Barstow, D., Atkinson, T., Holbrook, J.J. Nature (1986) [Pubmed]
  39. In vivo expression of the nucleolar group I intron-encoded I-dirI homing endonuclease involves the removal of a spliceosomal intron. Vader, A., Nielsen, H., Johansen, S. EMBO J. (1999) [Pubmed]
  40. A fully active catalytic domain of bovine aspartyl (asparaginyl) beta-hydroxylase expressed in Escherichia coli: characterization and evidence for the identification of an active-site region in vertebrate alpha-ketoglutarate-dependent dioxygenases. Jia, S., McGinnis, K., VanDusen, W.J., Burke, C.J., Kuo, A., Griffin, P.R., Sardana, M.K., Elliston, K.O., Stern, A.M., Friedman, P.A. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  41. A single amino acid switch within the "hinge" region of the tryptophan synthase beta subunit of Escherichia coli that leads to diminished association with alpha subunit and arrested conversion of ESII to product. Zhao, G.P., Somerville, R.L. J. Biol. Chem. (1993) [Pubmed]
  42. Aldose reductase catalysis and crystallography. Insights from recent advances in enzyme structure and function. Petrash, J.M., Tarle, I., Wilson, D.K., Quiocho, F.A. Diabetes (1994) [Pubmed]
WikiGenes - Universities