The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Metabolism of benzamidoxime (N-hydroxyamidine) in human hepatocytes and role of UDP-glucuronosyltransferases.

N-Hydroxyamidines (amidoximes) can act as pro-drugs of amidines (e.g. ximelagatran, a novel direct thrombin inhibitor). This known pro-drug principle is based on the N-reduction of an oral bioavailable amidoxime to its active form. Previous study of the metabolism of the model substrate benzamidoxime by pig hepatocytes demonstrated the formation of benzamidoxime-O-glucuronide in addition to the well-established N-reduction. The objective of the present work was to investigate the glucuronidation of benzamidoxime by using cultivated cryopreserved human hepatocytes. Furthermore, the involvement of human UDP-glucuronosyltransferases (UGTs) was examined by incubating benzamidoxime in the presence of eight human hepatic recombinant UGT enzymes. Metabolites were analysed by liquid chromatography/ mass spectrometry using electrospray ionization and compared with authentic synthetic compounds. For the first time, the O-glucuronidation of benzamidoxime was demonstrated in cultures of human hepatocytes. UGT1A9 is the most efficient enzyme conjugating benzamidoxime, whereas the conversion activities of UGT1A1 and UGT1A3 were 60-fold lower. Human hepatocytes form two non-mutagenic compounds: benzamidine, as the predominating metabolite, and benzamidoxime-O-glucuronide to a lesser extent. N-oxidation of benzamidine was not detected.[1]


WikiGenes - Universities