The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

KChIP2 modulates the cell surface expression of Kv 1.5-encoded K(+) channels.

The Kv channel interacting proteins (KChIPs) were identified in a yeast two hybrid screen using the N terminus of Kv4.3 as bait. Previous studies have demonstrated that KChIP2 associates with voltage-gated K(+) (Kv) pore-forming (alpha) subunits of the Kv4 subfamily and contributes to the formation of the rapidly inactivating and recovering Kv4-encoded cardiac transient outward K(+) channels, I(to,f). Here, we report that co-expression of KChIP2 (or KChIP1) also modulates the functional cell surface expression of Kv1.5-encoded K(+) channels in transiently transfected HEK-293 cells. In contrast to the effects of KChIP2 on Kv4 channels, however, co-expression of KChIP2 (or KChIP1) decreases Kv1.5-encoded K(+) currents. Although current densities are reduced, KChIP2 (or KChIP1) co-expression does not affect the time- or voltage-dependent properties of heterologously expressed Kv1.5-encoded K(+) currents. Immunohistochemical and cell surface biotinylation experiments demonstrate that KChIP2 reduces the cell surface expression of Kv1.5, likely by inhibiting forward trafficking from the endoplasmic reticulum. In addition, biochemical experiments reveal that KChIP2 co-immunoprecipitates with Kv1.5 (as well as Kv4.2/Kv4.3) from adult mouse ventricles, demonstrating that, similar to other Kv accessory subunits, KChIP2 is a multifunctional Kv channel accessory subunit. Taken together, the results here suggest that KChIP2 contributes to the formation of functional mouse ventricular (Kv1.5-encoded) I(K,slow1) channels as well, perhaps, as other Kv1.5-encoded K(+) currents, including I(Kur) (I(K,ultrarapid)), in human atria.[1]


  1. KChIP2 modulates the cell surface expression of Kv 1.5-encoded K(+) channels. Li, H., Guo, W., Mellor, R.L., Nerbonne, J.M. J. Mol. Cell. Cardiol. (2005) [Pubmed]
WikiGenes - Universities