Heat shock protein modulation of KATP and KCa channel cerebrovasodilation after brain injury.
Fluid percussion brain injury (FPI) impairs pial artery dilation to activators of the ATP-sensitive (K(ATP)) and calcium-activated (K(Ca)) K(+) channels. This study investigated the role of heat shock protein (HSP) in the modulation of K(+) channel-induced pial artery dilation after FPI in newborn pigs equipped with a closed cranial window. Under nonbrain injury conditions, topical coadministration of exogenous HSP-27 (1 mug/ml) blunted dilation to cromakalim, CGRP, and NS-1619 (10(-8) and 10(-6) M; cromakalim and CGRP are K(ATP) agonists and NS-1619 is a K(Ca) agonist). In contrast, coadministration of exogenous HSP-70 (1 mug/ml) potentiated dilation to cromakalim, CGRP, and NS-1619. FPI increased the cerebrospinal fluid (CSF) concentration of HSP-27 from 0.051 +/- 0.012 to 0.113 +/- 0.035 ng/ml but decreased the CSF concentration of HSP-70 from 50.42 +/- 8.96 to 30.9 +/- 9.9 ng/ml at 1 h postinsult. Pretreatment with topical exogenous HSP-70 (1 mug/ml) before FPI fully blocked injury-induced impairment of cromakalim and CGRP dilation and partially blocked injury-induced impairment of dilation to NS-1619. These data indicate that HSP-27 and HSP-70 contribute to modulation of K(+) channel-induced pial artery dilation. These data suggest that HSP-70 is an endogenous protectant of which its actions may be unmasked and/or potentiated with exogenous administration before brain injury.[1]References
- Heat shock protein modulation of KATP and KCa channel cerebrovasodilation after brain injury. Armstead, W.M., Hecker, J.G. Am. J. Physiol. Heart Circ. Physiol. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg