The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Normal CFTR Activity and Reversed Skin Potentials in Pseudohypoaldosteronism.

Cystic fibrosis ( CF) transmembrane conductance regulator (CFTR) Cl(-) channel function is required for activating amiloride-sensitive epithelial Na(+) channels (ENaC) in salt-absorbing human sweat duct. It is unclear whether ENaC channel function is also required for CFTR activation. The dysfunctional ENaC mutations in type-1 pseudohypoaldosteronism (PHA-1) provided a good opportunity to study this phenomenon of ion channel interaction between CFTR and ENaC. The PHA-1 ducts completely lacked spontaneous ENaC conductance (gENaC). In contrast, the normal ducts showed large spontaneous gENaC (46 +/- 10 ms, mean +/- SE: ). After permeabilization of the basolateral membrane with alpha-toxin, cAMP + ATP activation of CFTR Cl(-) conductance (gCFTR) or alkalinization of cytosolic pH (6.8 to 8.5) stimulated gENaC of normal but not PHA-1 ducts. In contrast, both spontaneous gCFTR in intact ducts and (cAMP + ATP)-activated gCFTR of permeabilized ducts appeared to be similar in normal and PHA-1 subjects. Lack of gENaC completely blocked salt absorption and caused dramatic reversal of skin potentials associated with pilocarpine-induced sweat secretion from significantly negative in normal subjects (-13 +/- 7.0 mV) to significantly positive (+22 +/- 11.0 mV) in PHA-1 patients. We conclude that virtual lack of ENaC in PHA-1 ducts had little effect on CFTR activity and that the positive skin potentials could potentially serve as a diagnostic tool to identify type-1 pseudohypoaldosteronism.[1]

References

  1. Normal CFTR Activity and Reversed Skin Potentials in Pseudohypoaldosteronism. Reddy, M.M., Wang, X.F., Gottschalk, M., Jones, K., Quinton, P.M. J. Membr. Biol. (2005) [Pubmed]
 
WikiGenes - Universities