The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The establishment of a predictive mutational model of the forkhead domain through the analyses of FOXC2 missense mutations identified in patients with hereditary lymphedema with distichiasis.

The FOX family of transcription factor genes is an evolutionary conserved, yet functionally diverse class of transcription factors that are important for regulation of energy homeostasis, development and oncogenesis. The proteins encoded by FOX genes are characterized by a conserved DNA-binding domain known as the forkhead domain (FHD). To date, disease-causing mutations have been identified in eight human FOX genes. Many of these mutations result in single amino acid substitutions in the FHD. We analyzed the molecular consequences of two disease-causing missense mutations (R121H and S125L) occurring in the FHD of the FOXC2 gene that were identified in patients with hereditary lymphedema with distichiasis (LD) to test the predictive capacity of a FHD structure/function model. On the basis of the FOXC2 solution structure, both FOXC2 missense mutations are located on the DNA-recognition helix of the FHD. A mutation model based on the parologous FOXC1 protein predicts that these FOXC2 missense mutations will impair the DNA-binding and transcriptional activation ability of the FOXC2 protein. When these mutations were analyzed biochemically, we found that both mutations did indeed reduce the DNA binding and transcriptional capacity. In addition, the R121H mutation affected nuclear localization of FOXC2. Together, these data indicate that these FOXC2 missense mutations are functional nulls and that FOXC2 haploinsufficiency underlies hereditary LD and validates the predictive ability of the FOXC1-based FHD mutational model.[1]

References

 
WikiGenes - Universities