The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Six lysine residues on c-Myc are direct substrates for acetylation by p300.

The c-Myc oncoprotein (Myc) functions as a transcription regulator in association with an obligatory partner, Max, to control cell growth and differentiation. The Myc:Max complex regulates specific genes by recognizing "E-box" DNA sequences and promoter-bound factors such as Miz-1. Myc recruits histone acetyltransferases (HATs) to modify chromatin and is, itself, acetylated in mammalian cells by several of these HATs including p300/CBP, GCN5, and Tip60. The Myc residues that are directly modified by these different HATs remain unknown. Here, we have analyzed the acetylation of recombinant Myc:Max complexes by purified p300 HAT in vitro by using MALDI-TOF and LC-ESI-MS/MS mass spectrometry. These analyses identify six lysine residues in human Myc (K143, K157, K275, K317, K323, and K371) as direct substrates for p300. Our results further indicate that p300 can acetylate DNA-bound Myc:Max complexes and that acetylated Myc:Max heterodimers efficiently interact with Miz-1.[1]

References

  1. Six lysine residues on c-Myc are direct substrates for acetylation by p300. Zhang, K., Faiola, F., Martinez, E. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
 
WikiGenes - Universities