The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sequence analysis of nuclear genes encoding functionally important complex I subunits in children with encephalomyopathy.

Complex I has a vital role in the energy production of the cell, and the clinical spectrum of complex I deficiency varies from severe lactic acidosis in infants to muscle weakness in adults. It has been estimated that the cause of complex I deficiency, especially in children, is often a mutation in the nuclear-encoded genes and, more rarely, in the genes encoded by mitochondrial DNA. We sequenced nine complex I subunit coding genes, NDUFAB1, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1 and NDUFV2, in 13 children with defined complex I deficiency. Two novel substitutions were found: a synonymous replacement 201A>T in NDUFV2 and a non-synonymous base exchange 52C>T in NDUFS8. The 52C>T substitution produced the replacement Arg18Cys in the leading peptide of the TYKY subunit. This novel missense mutation was found as a heterozygote in one patient and her mother, but not among 202 healthy controls nor among 107 children with undefined encephalomyopathy. Bioinformatic analyses suggested that Arg18Cys could lead to marked changes in the physicochemical properties of the mitochondrial-targeting peptide of TYKY, but we could not see changes in the assembly or activity of complex I or in the transcription of NDUFS8 in the fibroblasts of our patient. We suggest that Arg18Cys in the leading peptide of the TYKY subunit is not solely pathogenic, and that other genetic factors contribute to the disease-causing potential of this mutation.[1]

References

  1. Sequence analysis of nuclear genes encoding functionally important complex I subunits in children with encephalomyopathy. Hinttala, R., Uusimaa, J., Remes, A.M., Rantala, H., Hassinen, I.E., Majamaa, K. J. Mol. Med. (2005) [Pubmed]
 
WikiGenes - Universities