The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Expression and carbonylation of creatine kinase in the quadriceps femoris muscles of patients with chronic obstructive pulmonary disease.

Oxidative protein modification involving carbonylation has recently been identified as an important factor in skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease (COPD). However, the exact identity of modified proteins inside limb muscles of patients with COPD remains unknown. We used 2D electrophoresis, immunoblotting, and mass spectrometry to identify carbonylated proteins in the vastus lateralis muscle of 12 patients with COPD and 6 control subjects. Both creatine kinase (CK) and carbonic anhydrase III (CAIII) were identified as being strongly carbonylated in this muscle in both groups of subjects. Total CK activity, CK protein expression, and the intensity of CK carbonylation were significantly greater in the muscles of patients with COPD as compared with control subjects, whereas CAIII protein expression and intensity of carbonylation were similar in the two groups. In patients with COPD, CK activity and protein expression correlated positively with FEV(1) and V O(2)max, whereas the intensity of CK carbonylation correlated negatively with the same parameters. These results indicate that oxygen radicals selectively target CK and CAIII inside limb muscles of humans. The observation that the intensity of CK carbonylation correlates negatively with CK activity in limb muscles of patients with COPD suggests that carbonylation may have a deleterious effect on CK activity, and may contribute to impaired CK function in the limb muscles of these patients.[1]


WikiGenes - Universities