The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Antagonistic interaction between IGF and Wnt/JNK signaling in convergent extension in Xenopus embryo.

The homeobox gene Otx2 is expressed during gastrulation in the anterior domain of the vertebrate embryo and is involved in neural and head induction during Xenopus early development. It also prevents convergent extension movements in trunk and posterior mesoderm. Insulin-like growth factors (IGFs) were shown to have similar function. However, whether they interact and the mechanism by which they affect convergent extension remain unclear. We show that IGF pathway specifically induces the expression of Otx2 in the early gastrula and blocks convergent extension of neuroectoderm and mesoderm through the transcriptional activation of Otx2 gene. Otx2 represses the expression of Xbra and Xwnt-11, and the effects of IGF on gastrulation movements can be partially rescued by antisense Otx2 morpholino oligonucleotide. These indicate that IGF pathway interacts with Otx2 to restrict Xbra and Xwnt-11 expression in the trunk and posterior regions. Consistent with this, we show that inhibition of IGF signaling or Otx2 function induces Xbra and Xwnt11 expression and convergent extension in ectodermal cells. Furthermore, the blockade of convergent extension by IGF-I and Otx2 can be rescued by coexpression of Xwnt-11 or a constitutively active Jun N-terminal kinase (JNK). Because Xbra and Xwnt-11 are required for convergent extension movements and Xwnt-11 activates the non-canonical Wnt-11/JNK pathway, our results reveal a mutually exclusive function between IGF and Wnt-11/JNK pathways in regulating cell behaviours during vertebrate head and trunk development.[1]


  1. Antagonistic interaction between IGF and Wnt/JNK signaling in convergent extension in Xenopus embryo. Carron, C., Bourdelas, A., Li, H.Y., Boucaut, J.C., Shi, D.L. Mech. Dev. (2005) [Pubmed]
WikiGenes - Universities