The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Mesoderm

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Mesoderm

 

High impact information on Mesoderm

  • In Xenopus embryos, Ecto is essential for the specification of the ectoderm and acts by restricting the mesoderm-inducing activity of TGF-beta signals to the mesoderm and favoring neural induction [6].
  • Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis [7].
  • Our results show that all posterior limb mesenchyme cells, as well as the ectoderm, respond to Shh from the ZPA and become the bone, muscle, and skin of the posterior limb [8].
  • Disruption of embryonic polarity and mesoderm differentiation in mesd-deficient embryos likely results from a primary defect in WNT signaling [9].
  • Amh induces regression by binding to a specific type II receptor (Amhr2) expressed in the mesenchyme surrounding the ductal epithelium [10].
 

Chemical compound and disease context of Mesoderm

 

Biological context of Mesoderm

  • The identification of protein factors, such as epimorphin, scatter factor, and activin, that induce epithelial branching and convergent extension-like movements in embryonic tissues are important breakthroughs in our understanding of the role of mesenchyme in epithelial morphogenesis [16].
  • Expression of this truncated BMP receptor during embryogenesis converts ventral mesoderm to dorsal mesoderm [17].
  • In this paper, we show that low affinity dl-binding sites restrict target gene expression to the ventralmost regions (presumptive mesoderm), where there are peak levels of dl, while high affinity sites permit expression in ventrolateral regions (mesoderm and mesectoderm) containing intermediate levels of the morphogen [18].
  • The homeotic gene Ultrabithorax (Ubx) is expressed in specific parts of Drosophila embryos: in a single metamer in the visceral mesoderm and forming a complex pattern limited to a broad domain in the ectoderm and in the somatic mesoderm [19].
  • Although RET's ligand has remained elusive, it is expected to be an extracellular neurotrophic molecule expressed in the developing gut and kidney mesenchyme, based on the phenotypes of intestinal aganglionosis and renal agenesis observed in homozygous RET knockout (Ret -/-) mice [20].
 

Anatomical context of Mesoderm

  • Here we show that Wnt3 is expressed before gastrulation in the proximal epiblast of the egg cylinder, then is restricted to the posterior proximal epiblast and its associated visceral endoderm and subsequently to the primitive streak and mesoderm [21].
  • FGF8 also maintains mesoderm outgrowth and Sonic hedgehog expression in the established limb bud [22].
  • Like noggin, Xnr3 can induce muscle in ventral mesoderm explants, consistent with a role in patterning the gastrula [23].
  • Overexpression of Eomes dorsalizes ventral mesoderm, inducing gsc and changing cell fate to muscle and notochord [24].
  • noggin is expressed in the Spemann organizer region of the Xenopus embryo and can promote dorsal cell fates within the mesoderm and neural development within the overlying ectoderm [25].
 

Associations of Mesoderm with chemical compounds

 

Gene context of Mesoderm

  • To address the role of this factor, BMP-4-releasing agarose beads were added to dental mesenchyme in culture [30].
  • The results point to a key role for a Notch-signalling pathway in the initiation of patterning of vertebrate paraxial mesoderm [31].
  • We report that Pitx2, a bicoid-type homeobox gene expressed asymmetrically in the left lateral plate mesoderm, may be involved in determination of L-R asymmetry in both mouse and chick [32].
  • Embryos homozygous for the Hand1 null allele died between embryonic days 8.5 and 9.5 and exhibited yolk sac abnormalities due to a deficiency in extraembryonic mesoderm [33].
  • Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue [34].
 

Analytical, diagnostic and therapeutic context of Mesoderm

References

  1. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. el Ghouzzi, V., Le Merrer, M., Perrin-Schmitt, F., Lajeunie, E., Benit, P., Renier, D., Bourgeois, P., Bolcato-Bellemin, A.L., Munnich, A., Bonaventure, J. Nat. Genet. (1997) [Pubmed]
  2. A specific requirement for PDGF-C in palate formation and PDGFR-alpha signaling. Ding, H., Wu, X., Boström, H., Kim, I., Wong, N., Tsoi, B., O'Rourke, M., Koh, G.Y., Soriano, P., Betsholtz, C., Hart, T.C., Marazita, M.L., Field, L.L., Tam, P.P., Nagy, A. Nat. Genet. (2004) [Pubmed]
  3. Autonomous and nonautonomous Notch functions for embryonic muscle and epidermis development in Drosophila. Baker, R., Schubiger, G. Development (1996) [Pubmed]
  4. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Ito, Y., Yeo, J.Y., Chytil, A., Han, J., Bringas, P., Nakajima, A., Shuler, C.F., Moses, H.L., Chai, Y. Development (2003) [Pubmed]
  5. Restriction of sonic hedgehog signalling during early tooth development. Cobourne, M.T., Miletich, I., Sharpe, P.T. Development (2004) [Pubmed]
  6. Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Dupont, S., Zacchigna, L., Cordenonsi, M., Soligo, S., Adorno, M., Rugge, M., Piccolo, S. Cell (2005) [Pubmed]
  7. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Hill, R., Song, Y., Cardiff, R.D., Van Dyke, T. Cell (2005) [Pubmed]
  8. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Ahn, S., Joyner, A.L. Cell (2004) [Pubmed]
  9. Mesd encodes an LRP5/6 chaperone essential for specification of mouse embryonic polarity. Hsieh, J.C., Lee, L., Zhang, L., Wefer, S., Brown, K., DeRossi, C., Wines, M.E., Rosenquist, T., Holdener, B.C. Cell (2003) [Pubmed]
  10. Requirement of Bmpr1a for Müllerian duct regression during male sexual development. Jamin, S.P., Arango, N.A., Mishina, Y., Hanks, M.C., Behringer, R.R. Nat. Genet. (2002) [Pubmed]
  11. Implication of Wt1 in the pathogenesis of nephrogenic failure in a mouse model of retinoic acid-induced caudal regression syndrome. Tse, H.K., Leung, M.B., Woolf, A.S., Menke, A.L., Hastie, N.D., Gosling, J.A., Pang, C.P., Shum, A.S. Am. J. Pathol. (2005) [Pubmed]
  12. Deregulated expression of the retinoid X receptor alpha prevents muscle differentiation in P19 embryonal carcinoma cells. Pratt, M.A., Crippen, C., Hubbard, K., Menard, M. Cell Growth Differ. (1998) [Pubmed]
  13. Prostatic induction: interaction of epithelium and mesenchyme from normal wild-type mice and androgen-insensitive mice with testicular feminization. Lasnitzki, I., Mizuno, T. J. Endocrinol. (1980) [Pubmed]
  14. Stromal expression of tenascin is inversely correlated to epithelial differentiation of hormone dependent tissues. Vollmer, G., Michna, H., Schneider, M.R., Knuppen, R. J. Steroid Biochem. Mol. Biol. (1994) [Pubmed]
  15. Spatiotemporal distribution of insulin-like growth factor receptors during nephrogenesis in fetuses from normal and diabetic rats. Duong Van Huyen, J.P., Amri, K., Bélair, M.F., Vilar, J., Merlet-Bénichou, C., Bruneval, P., Lelièvre-Pégorier, M. Cell Tissue Res. (2003) [Pubmed]
  16. Epithelial morphogenesis. Gumbiner, B.M. Cell (1992) [Pubmed]
  17. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Graff, J.M., Thies, R.S., Song, J.J., Celeste, A.J., Melton, D.A. Cell (1994) [Pubmed]
  18. Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen. Jiang, J., Levine, M. Cell (1993) [Pubmed]
  19. Differential regulation of Ultrabithorax in two germ layers of Drosophila. Bienz, M., Saari, G., Tremml, G., Müller, J., Züst, B., Lawrence, P.A. Cell (1988) [Pubmed]
  20. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Angrist, M., Bolk, S., Halushka, M., Lapchak, P.A., Chakravarti, A. Nat. Genet. (1996) [Pubmed]
  21. Requirement for Wnt3 in vertebrate axis formation. Liu, P., Wakamiya, M., Shea, M.J., Albrecht, U., Behringer, R.R., Bradley, A. Nat. Genet. (1999) [Pubmed]
  22. Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Crossley, P.H., Minowada, G., MacArthur, C.A., Martin, G.R. Cell (1996) [Pubmed]
  23. A nodal-related gene defines a physical and functional domain within the Spemann organizer. Smith, W.C., McKendry, R., Ribisi, S., Harland, R.M. Cell (1995) [Pubmed]
  24. Eomesodermin, a key early gene in Xenopus mesoderm differentiation. Ryan, K., Garrett, N., Mitchell, A., Gurdon, J.B. Cell (1996) [Pubmed]
  25. The Xenopus dorsalizing factor noggin ventralizes Drosophila embryos by preventing DPP from activating its receptor. Holley, S.A., Neul, J.L., Attisano, L., Wrana, J.L., Sasai, Y., O'Connor, M.B., De Robertis, E.M., Ferguson, E.L. Cell (1996) [Pubmed]
  26. Regression of mouse mammary gland anlagen in recombinants of Tfm and wild-type tissues: testosterone acts via the mesenchyme. Drews, U., Drews, U. Cell (1977) [Pubmed]
  27. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Niswander, L., Jeffrey, S., Martin, G.R., Tickle, C. Nature (1994) [Pubmed]
  28. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Stark, K., Vainio, S., Vassileva, G., McMahon, A.P. Nature (1994) [Pubmed]
  29. Lithium-sensitive production of inositol phosphates during amphibian embryonic mesoderm induction. Maslanski, J.A., Leshko, L., Busa, W.B. Science (1992) [Pubmed]
  30. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Vainio, S., Karavanova, I., Jowett, A., Thesleff, I. Cell (1993) [Pubmed]
  31. The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Kusumi, K., Sun, E.S., Kerrebrock, A.W., Bronson, R.T., Chi, D.C., Bulotsky, M.S., Spencer, J.B., Birren, B.W., Frankel, W.N., Lander, E.S. Nat. Genet. (1998) [Pubmed]
  32. Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Yoshioka, H., Meno, C., Koshiba, K., Sugihara, M., Itoh, H., Ishimaru, Y., Inoue, T., Ohuchi, H., Semina, E.V., Murray, J.C., Hamada, H., Noji, S. Cell (1998) [Pubmed]
  33. Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Firulli, A.B., McFadden, D.G., Lin, Q., Srivastava, D., Olson, E.N. Nat. Genet. (1998) [Pubmed]
  34. Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Maroto, M., Reshef, R., Münsterberg, A.E., Koester, S., Goulding, M., Lassar, A.B. Cell (1997) [Pubmed]
  35. Overexpression of a homeodomain protein confers axis-forming activity to uncommitted Xenopus embryonic cells. Cho, K.W., Morita, E.A., Wright, C.V., De Robertis, E.M. Cell (1991) [Pubmed]
  36. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Li, X., Pontén, A., Aase, K., Karlsson, L., Abramsson, A., Uutela, M., Bäckström, G., Hellström, M., Boström, H., Li, H., Soriano, P., Betsholtz, C., Heldin, C.H., Alitalo, K., Ostman, A., Eriksson, U. Nat. Cell Biol. (2000) [Pubmed]
  37. Matrix metalloproteinases MMP2 and MMP9 are produced in early stages of kidney morphogenesis but only MMP9 is required for renal organogenesis in vitro. Lelongt, B., Trugnan, G., Murphy, G., Ronco, P.M. J. Cell Biol. (1997) [Pubmed]
  38. Roles of hepatocyte growth factor/scatter factor and the met receptor in the early development of the metanephros. Woolf, A.S., Kolatsi-Joannou, M., Hardman, P., Andermarcher, E., Moorby, C., Fine, L.G., Jat, P.S., Noble, M.D., Gherardi, E. J. Cell Biol. (1995) [Pubmed]
  39. Individual dorsal morphogen binding sites mediate activation and repression in the Drosophila embryo. Jiang, J., Rushlow, C.A., Zhou, Q., Small, S., Levine, M. EMBO J. (1992) [Pubmed]
 
WikiGenes - Universities