Extraction and visualization of potential pharmacophore points using support vector machines: application to ligand-based virtual screening for COX-2 inhibitors.
Support vector machines (SVM) were trained to predict cyclooxygenase 2 ( COX-2) and thrombin inhibitors. The classifiers were obtained using sets of known COX-2 and thrombin inhibitors as "positive examples" and a large collection of screening compounds as "negative examples". Molecules were encoded by topological pharmacophore-point triangles. In retrospective virtual screening, 50-90% of the known active compounds were listed within the first 0.1% of the ranked database. To check the validity of the constructed classifiers, we developed a method for feature extraction and visualization using SVM. As a result, potential pharmacophore points were weighted according to their importance for COX-2 and thrombin inhibition. Known thrombin and COX-2 pharmacophore points were correctly recognized by the machine learning system. In a prospective virtual screening study, several potential COX-2 inhibitors were predicted and tested in a cellular activity assay. A benzimidazole derivative exhibited significant inhibitory activity with an IC(50) of 0.2 microM, which is better than Celecoxib in our assay. It was demonstrated that the SVM machine-learning method can be used in virtual screening and be analyzed in a human-interpretable way that results in a set of rules for designing novel molecules.[1]References
- Extraction and visualization of potential pharmacophore points using support vector machines: application to ligand-based virtual screening for COX-2 inhibitors. Franke, L., Byvatov, E., Werz, O., Steinhilber, D., Schneider, P., Schneider, G. J. Med. Chem. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg