The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Extraction and visualization of potential pharmacophore points using support vector machines: application to ligand-based virtual screening for COX-2 inhibitors.

Support vector machines (SVM) were trained to predict cyclooxygenase 2 ( COX-2) and thrombin inhibitors. The classifiers were obtained using sets of known COX-2 and thrombin inhibitors as "positive examples" and a large collection of screening compounds as "negative examples". Molecules were encoded by topological pharmacophore-point triangles. In retrospective virtual screening, 50-90% of the known active compounds were listed within the first 0.1% of the ranked database. To check the validity of the constructed classifiers, we developed a method for feature extraction and visualization using SVM. As a result, potential pharmacophore points were weighted according to their importance for COX-2 and thrombin inhibition. Known thrombin and COX-2 pharmacophore points were correctly recognized by the machine learning system. In a prospective virtual screening study, several potential COX-2 inhibitors were predicted and tested in a cellular activity assay. A benzimidazole derivative exhibited significant inhibitory activity with an IC(50) of 0.2 microM, which is better than Celecoxib in our assay. It was demonstrated that the SVM machine-learning method can be used in virtual screening and be analyzed in a human-interpretable way that results in a set of rules for designing novel molecules.[1]

References

 
WikiGenes - Universities