The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Influence of exercise training on the oxidative capacity of rat abdominal muscles.

Our purpose was to determine if endurance exercise training would increase the oxidative capacity of the abdominal expiratory muscles of the rat. Accordingly, 9 male rats were subjected to an endurance training protocol (1 h/day, 6 days/week, 9 weeks) and 9 litter-mates served as controls. Citrate synthase ( CS) activity was used as an index of oxidative capacity, and was determined in the following muscles: soleus, plantaris, costal diaphragm, crural diaphragm, and in all four abdominal muscles: rectus abdominis, transversus abdominis, external oblique, and internal oblique. Compared to their non-trained litter-mates, the trained rats had higher peak whole body oxygen consumption rates (+ 16%) and CS activities in plantaris (+34%) and soleus (+36%) muscles. Thus, the training program caused substantial systemic and locomotor muscle adaptations. The CS activity of costal diaphragm was 20% greater in the trained animals, but no difference was observed in crural diaphragm. The CS activity in the abdominal muscles was less than one-half of that in locomotor and diaphragm muscles, and there were no significant changes with training except in the rectus abdominis where a 26% increase was observed. The increase in rectus abdominis CS activity may reflect its role in postural support and/or locomotion, as none of the primary expiratory pumping muscles adapted to the training protocol. The relatively low levels of CS activity in the abdominal muscles suggests that they are not recruited frequently at rest, and the lack of an increase with training indicates that these muscles do not contribute significantly to the increased ventilatory activity accompanying exercise in the rat.[1]

References

  1. Influence of exercise training on the oxidative capacity of rat abdominal muscles. Uribe, J.M., Stump, C.S., Tipton, C.M., Fregosi, R.F. Respiration physiology. (1992) [Pubmed]
 
WikiGenes - Universities