The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sorption of nitroaromatic compounds to synthesized organoclays.

This project quantifies the ability of seven engineered organoclays to sorb TNT and two of its reduction products: 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT) and 4-amino-2,6-dinitrotoluene (4-A-2,6-DNT). The organoclays used in the TNT sorption studies were synthesized in the laboratory by combining bentonite with benzyltriethylammonium chloride (BTEA) at 50, 75, and 100% of the bentonite's cation exchange capacity and with hexadecyltrimethylammonium bromide (HDTMA) at 25, 50, 75, and 100% of the bentonite's cation exchange capacity. For sorption of 2-A-4,6-DNT and 4-A-2,6-DNT, two organoclays were tested: BTEA at 50% CEC and HDTMA at 75% CEC. Sorption data with HDTMA organoclay and TNT were fit to linear isotherms and demonstrated that the clay's sorptive capacity increased as the amount of total organic carbon exchanged onto the clay increased. Sorption data with BTEA organoclay and TNT were fit to Langmuir isotherms; however, the clay's sorptive capacity increased as the amount of total organic carbon sorbed to the clay's surface was decreased. Sorption behavior for TNT reduction products 2-A-4,6-DNT and 4-A-2,6-DNT to one HDTMA organoclay and one BTEA organoclay demonstrated that HDTMA organoclay at 10.3% total organic carbon was a more effective sorbent than BTEA organoclay at 5.2% total organic carbon.[1]

References

  1. Sorption of nitroaromatic compounds to synthesized organoclays. Upson, R.T., Burns, S.E. Journal of colloid and interface science. (2006) [Pubmed]
 
WikiGenes - Universities