Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release.
Ca(2+) triggers neurotransmitter release in at least two principal modes, synchronous and asynchronous release. Synaptotagmin 1 functions as a Ca(2+) sensor for synchronous release, but its role in asynchronous release remains unclear. We now show that in cultured cortical neurons stimulated at low frequency (<or.1 Hz), deletion of synaptotagmin 1 blocks synchronous GABA and glutamate release without significantly increasing asynchronous release. At higher stimulation frequencies (>or Hz), deletion of synaptotagmin 1 also alters only synchronous, not asynchronous, release during the stimulus train, but dramatically enhances "delayed asynchronous release" following the stimulus train. Thus synaptotagmin 1 functions as an autonomous Ca(2+) sensor independent of asynchronous release during isolated action potentials and action potential trains, but restricts asynchronous release induced by residual Ca(2+) after action potential trains. We propose that synaptotagmin 1 occupies release "slots" at the active zone, possibly in a Ca(2+)-independent complex with SNARE proteins that are freed when action potential-induced Ca(2+) influx activates synaptotagmin 1.[1]References
- Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release. Maximov, A., Südhof, T.C. Neuron (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg