The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Calcium- and metabolic state-dependent modulation of the voltage-dependent Kv2.1 channel regulates neuronal excitability in response to ischemia.

Ischemic stroke is often accompanied by neuronal hyperexcitability (i.e., seizures), which aggravates brain damage. Therefore, suppressing stroke-induced hyperexcitability and associated excitoxicity is a major focus of treatment for ischemic insults. Both ATP-dependent and Ca2+-activated K+ channels have been implicated in protective mechanisms to suppress ischemia-induced hyperexcitability. Here we provide evidence that the localization and function of Kv2.1, the major somatodendritic delayed rectifier voltage-dependent K+ channel in central neurons, is regulated by hypoxia/ischemia-induced changes in metabolic state and intracellular Ca2+ levels. Hypoxia/ischemia in rat brain induced a dramatic dephosphorylation of Kv2.1 and the translocation of surface Kv2.1 from clusters to a uniform localization. In cultured rat hippocampal neurons, chemical ischemia (CI) elicited a similar dephosphorylation and translocation of Kv2. 1. These events were reversible and were mediated by Ca2+ release from intracellular stores and calcineurin-mediated Kv2.1 dephosphorylation. CI also induced a hyperpolarizing shift in the voltage-dependent activation of neuronal delayed rectifier currents (IK), leading to enhanced IK and suppressed neuronal excitability. The IK blocker tetraethylammonium reversed the ischemia-induced suppression of excitability and aggravated ischemic neuronal damage. Our results show that Kv2.1 can act as a novel Ca2+- and metabolic state-sensitive K+ channel and suggest that dynamic modulation of IK/Kv2.1 in response to hypoxia/ischemia suppresses neuronal excitability and could confer neuroprotection in response to brief ischemic insults.[1]


WikiGenes - Universities