The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Tetramon     tetraethylazanium

Synonyms: Tetrylammonium, Lopac-T-2265, CHEMBL9324, AG-G-50591, CHEBI:44296, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of tetraethylammonium

 

Psychiatry related information on tetraethylammonium

 

High impact information on tetraethylammonium

  • Broadening the presynaptic action potential with the potassium-channel blocker tetraethylammonium, which increases Ca2+ entry, further enhances the rate of replenishment [7].
  • 3H-thymidine incorporation by T lymphocytes following PHA stimulation is inhibited by the 'classical' K+ channel blockers tetraethylammonium and 4-aminopyridine, and also by quinine, at doses found to block the K+ channel in voltage-clamped T lymphocytes, suggesting that K+ channels may play a part in mitogenesis [8].
  • Attenuating outward K+ current with tetraethylammonium or elevated extracellular K+, but not blockers of Ca2+, Cl-, or other K+ channels, reduced apoptosis, even if associated increases in intracellular Ca2+ concentration were prevented [9].
  • The channels encoded by KAT1 are highly selective for K+ over other monovalent cations, are blocked by tetraethylammonium and barium, and have a single channel conductance of 28 +/- 7 picosiemens with 118 millimolar K+ in the bathing solution [10].
  • Tetraethylammonium ion (TEA+) and charybdotoxin (CTX), at concentrations that block calcium-activated potassium channels in smooth muscle cells isolated from cerebral arteries, depolarized and constricted pressurized cerebral arteries with myogenic tone [11].
 

Chemical compound and disease context of tetraethylammonium

 

Biological context of tetraethylammonium

  • The most prominent activities came from a set of potassium channels with the properties of activation by positive but not negative voltages, high selectivity for potassium over sodium ion, unit conductance of 20 picosiemens, inhibition by tetraethylammonium or barium ions, and bursting kinetics [16].
  • We demonstrated enhanced presynaptic function during long-term potentiation (LTP) induced either chemically (with tetraethylammonium), or by high-frequency (200-Hz) electrical stimulation [17].
  • The aromatic binding site for tetraethylammonium ion on potassium channels [18].
  • The subunit stoichiometry of the mammalian K+ channel KV1.1 (RCK1) was examined by linking together the coding sequences of 2-5 K+ channel subunits in a single open reading frame and tagging the expression of individual subunits with a mutation (Y379K or Y379R) that altered the sensitivity of the channel to block by external tetraethylammonium ion [19].
  • Supporting this contention, the K+ channel blocker tetraethylammonium (20 mM) inhibits the increased K+ permeability that follows treatment of swollen sperm (and of sperm in seawater) with 2.5 pM speract [20].
 

Anatomical context of tetraethylammonium

 

Associations of tetraethylammonium with other chemical compounds

 

Gene context of tetraethylammonium

 

Analytical, diagnostic and therapeutic context of tetraethylammonium

References

  1. Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium. Pardal, R., Ludewig, U., Garcia-Hirschfeld, J., Lopez-Barneo, J. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  2. Shear stress elevates endothelial cGMP. Role of a potassium channel and G protein coupling. Ohno, M., Gibbons, G.H., Dzau, V.J., Cooke, J.P. Circulation (1993) [Pubmed]
  3. Serotonin decreases the duration of action potentials recorded from tetraethylammonium-treated bullfrog dorsal root ganglion cells. Holz, G.G., Shefner, S.A., Anderson, E.G. J. Neurosci. (1986) [Pubmed]
  4. Verapamil inhibits proliferation of LNCaP human prostate cancer cells influencing K+ channel gating. Rybalchenko, V., Prevarskaya, N., Van Coppenolle, F., Legrand, G., Lemonnier, L., Le Bourhis, X., Skryma, R. Mol. Pharmacol. (2001) [Pubmed]
  5. Contractures elicited by tetraethylammonium in avian muscle treated with methohexitone. Elliott, R.C. Br. J. Pharmacol. (1979) [Pubmed]
  6. The effect of tetraethylammonium on intracellular calcium concentration in Alzheimer's disease fibroblasts with APP, S182 and E5-1 missense mutations. Failli, P., Tesco, G., Ruocco, C., Ginestroni, A., Amaducci, L., Giotti, A., Sorbi, S. Neurosci. Lett. (1996) [Pubmed]
  7. High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Wang, L.Y., Kaczmarek, L.K. Nature (1998) [Pubmed]
  8. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? DeCoursey, T.E., Chandy, K.G., Gupta, S., Cahalan, M.D. Nature (1984) [Pubmed]
  9. Mediation of neuronal apoptosis by enhancement of outward potassium current. Yu, S.P., Yeh, C.H., Sensi, S.L., Gwag, B.J., Canzoniero, L.M., Farhangrazi, Z.S., Ying, H.S., Tian, M., Dugan, L.L., Choi, D.W. Science (1997) [Pubmed]
  10. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Schachtman, D.P., Schroeder, J.I., Lucas, W.J., Anderson, J.A., Gaber, R.F. Science (1992) [Pubmed]
  11. Regulation of arterial tone by activation of calcium-dependent potassium channels. Brayden, J.E., Nelson, M.T. Science (1992) [Pubmed]
  12. Potential role for kv3.1b channels as oxygen sensors. Osipenko, O.N., Tate, R.J., Gurney, A.M. Circ. Res. (2000) [Pubmed]
  13. Transport of p-aminohippurate, tetraethylammonium and D-glucose in renal brush border membranes from rats with acute renal failure. Hori, R., Takano, M., Okano, T., Inui, K. J. Pharmacol. Exp. Ther. (1985) [Pubmed]
  14. Ionic mechanisms underlying depolarizing responses of an identified insect motor neuron to short periods of hypoxia. Le Corronc, H., Hue, B., Pitman, R.M. J. Neurophysiol. (1999) [Pubmed]
  15. Involvement of nicotinic and muscarinic receptors in synaptic transmission in cat superior cervical ganglions reinnervated by vagal primary afferent axons. Fujiwara, M., Kurahashi, K., Mizuno, N., Nakamura, Y. J. Pharmacol. Exp. Ther. (1978) [Pubmed]
  16. Ion channels in yeast. Gustin, M.C., Martinac, B., Saimi, Y., Culbertson, M.R., Kung, C. Science (1986) [Pubmed]
  17. Visualization of changes in presynaptic function during long-term synaptic plasticity. Zakharenko, S.S., Zablow, L., Siegelbaum, S.A. Nat. Neurosci. (2001) [Pubmed]
  18. The aromatic binding site for tetraethylammonium ion on potassium channels. Heginbotham, L., MacKinnon, R. Neuron (1992) [Pubmed]
  19. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Liman, E.R., Tytgat, J., Hess, P. Neuron (1992) [Pubmed]
  20. Early persistent activation of sperm K+ channels by the egg peptide speract. Babcock, D.F., Bosma, M.M., Battaglia, D.E., Darszon, A. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  21. Gap junctional conductance and permeability are linearly related. Verselis, V., White, R.L., Spray, D.C., Bennett, M.V. Science (1986) [Pubmed]
  22. Voltage-dependent calcium channels in glial cells. MacVicar, B.A. Science (1984) [Pubmed]
  23. Extracellular potassium ions mediate specific neuronal interaction. Yarom, Y., Spira, M.E. Science (1982) [Pubmed]
  24. Gallamine triethiodide (flaxedil): tetraethylammonium- and pancuronium-like effects in myelinated nerve fibers. Smith, K.J., Schauf, C.L. Science (1981) [Pubmed]
  25. MinK residues line a potassium channel pore. Wang, K.W., Tai, K.K., Goldstein, S.A. Neuron (1996) [Pubmed]
  26. Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor. Marshall, J., Buckingham, S.D., Shingai, R., Lunt, G.G., Goosey, M.W., Darlison, M.G., Sattelle, D.B., Barnard, E.A. EMBO J. (1990) [Pubmed]
  27. Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons. Wanke, E., Ferroni, A., Malgaroli, A., Ambrosini, A., Pozzan, T., Meldolesi, J. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  28. Extracellular K+ specifically modulates a rat brain K+ channel. Pardo, L.A., Heinemann, S.H., Terlau, H., Ludewig, U., Lorra, C., Pongs, O., Stühmer, W. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  29. Modulation of a cAMP/protein kinase A cascade by protein kinase C in sensory neurons of Aplysia. Sugita, S., Baxter, D.A., Byrne, J.H. J. Neurosci. (1997) [Pubmed]
  30. Discovery of the ergothioneine transporter. Gründemann, D., Harlfinger, S., Golz, S., Geerts, A., Lazar, A., Berkels, R., Jung, N., Rubbert, A., Schömig, E. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  31. Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Jonker, J.W., Wagenaar, E., Van Eijl, S., Schinkel, A.H. Mol. Cell. Biol. (2003) [Pubmed]
  32. Quaternary ammonium compounds as water channel blockers. Specificity, potency, and site of action. Detmers, F.J., de Groot, B.L., Müller, E.M., Hinton, A., Konings, I.B., Sze, M., Flitsch, S.L., Grubmüller, H., Deen, P.M. J. Biol. Chem. (2006) [Pubmed]
  33. Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity. Lerche, C., Scherer, C.R., Seebohm, G., Derst, C., Wei, A.D., Busch, A.E., Steinmeyer, K. J. Biol. Chem. (2000) [Pubmed]
  34. cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Wu, X., Prasad, P.D., Leibach, F.H., Ganapathy, V. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  35. Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels. Perozo, E., MacKinnon, R., Bezanilla, F., Stefani, E. Neuron (1993) [Pubmed]
  36. Longitudinal propagation of contraction in the isolated conduit coronary arteries of humans and pigs. Araki, H., Sakaino, N., Furusho, N., Nishi, K. Circ. Res. (1989) [Pubmed]
  37. An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential. Hibino, H., Horio, Y., Inanobe, A., Doi, K., Ito, M., Yamada, M., Gotow, T., Uchiyama, Y., Kawamura, M., Kubo, T., Kurachi, Y. J. Neurosci. (1997) [Pubmed]
  38. Membrane potential modulates release of tumor necrosis factor in lipopolysaccharide-stimulated mouse macrophages. Haslberger, A., Romanin, C., Koerber, R. Mol. Biol. Cell (1992) [Pubmed]
 
WikiGenes - Universities