The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 Wang,  
 

Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects.

This brief review attempts to provide an overview regarding recent developments in the regulation of ROMK channels. Studies performed in ROMK null mice suggest that ROMK cannot only form hometetramers such as the small-conductance (30-pS) K channels but also construct heterotetramers such as the 70-pS K channel in the thick ascending limb (TAL). The expression of ROMK channels in the plasma membrane is regulated by protein tyrosine kinase ( PTK), serum and glucorticoid-induced kinase (SGK), and with-no-lysine-kinase 4. PTK is involved in mediating the effect of low K intake on ROMK channel activity. Increases in superoxide anions induced by low dietary K intake are responsible for the stimulation of PTK expression and tyrosine phosphorylation of ROMK channels. Finally, a recent study indicated that ROMK channels can be monoubiquitinated and monoubiquitination regulates the surface expression of ROMK channels.[1]

References

  1. Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects. Wang, W.H. Am. J. Physiol. Renal Physiol. (2006) [Pubmed]
 
WikiGenes - Universities