The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Medaka double mutants for color interfere and leucophore free: characterization of the xanthophore-somatolactin relationship using the leucophore free gene.

Somatolactin (SL) plays an essential role in body-color regulation in medaka and is encoded by the color interfere (ci) locus. The ci mutant fish possess constitutively increased numbers of leucophores and a concomitant decrease in visible xanthophores. However, the mechanism of action of SL on these cell types, and the role of SL in body-color regulation in other species, is unknown. In this study, we verified an SL-xanthophore relationship in ci mutant fish using the leucophore free (lf) gene. Histological observation of lf larvae indicated that these mutants do not possess differentiated leucophores. The ci-lf double mutant, whose genotype was confirmed using DNA markers, lacked leucophores; however, the number of xanthophores remained low, demonstrating that leucophores are not necessary for mediating SL signaling to xanthophores. This finding suggests a conserved function for SL in xanthophore regulation across species, rather than the evolution of a medaka-specific and leucophore-dependent role of SL in body-color regulation. Our results also demonstrate that the lf gene has an indispensable role in leucophore development epistatic to SL signaling. The lf gene has not been cloned. The high-resolution recombination map surrounding the lf locus constructed in this study, together with medaka whole genome sequences that will be released soon, will allow the rapid cloning of the lf gene by forward genetic approaches.[1]

References

 
WikiGenes - Universities