P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation.
Human DSIF, a heterodimer composed of hSpt4 and hSpt5, plays opposing roles in transcription elongation by RNA polymerase II (RNA Pol II). Here, we describe an evolutionarily conserved repetitive heptapeptide motif (consensus = G-S-R/Q-T-P) in the C-terminal region ( CTR) of hSpt5, which, like the C-terminal domain (CTD) of RNA Pol II, is highly phosphorylated by P-TEFb. Thr-4 residues of the CTR repeats are functionally important phosphorylation sites. In vitro, Thr-4 phosphorylation is critical for the elongation activation activity of DSIF, but not to its elongation repression activity. In vivo, Thr-4 phosphorylation is critical for epidermal growth factor (EGF)-inducible transcription of c-fos and for efficient progression of RNA Pol II along the gene. We consider this phosphorylation to be a switch that converts DSIF from a repressor to an activator. We propose the "mini-CTD" hypothesis, in which phosphorylated CTR is thought to function in a manner analogous to phosphorylated CTD, serving as an additional code for active elongation complexes.[1]References
- P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Yamada, T., Yamaguchi, Y., Inukai, N., Okamoto, S., Mura, T., Handa, H. Mol. Cell (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg