The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Homocysteine-induced endoplasmic reticulum protein ( Herp) is up-regulated in sporadic inclusion-body myositis and in endoplasmic reticulum stress-induced cultured human muscle fibers.

Herp is a stress-response protein localized in the endoplasmic reticulum (ER) membrane. Herp was proposed to improve ER-folding, decrease ER protein load, and participate in ER-associated degradation (ERAD). Intra-muscle-fiber ubiquitinated multiprotein-aggregates containing, among other proteins, either amyloid-beta (Abeta) or phosphorylated tau are characteristic of sporadic inclusion-body myositis (s-IBM). ER stress and proteasome inhibition appear to play a role in s-IBM pathogenesis. We have now studied Herp in s-IBM muscle fibers and in ER-stress-induced or proteasome-inhibited cultured human muscle fibers. In s-IBM muscle fibers: (i) Herp was strongly immunoreactive in the form of aggregates, which co-localized with Abeta, GRP78, and beta2 proteasome subunit; (ii) Herp mRNA and protein were increased. In ER-stress-induced cultured human muscle fibers: (i) Herp immunoreactivity was diffusely increased; (ii) Herp mRNA and protein were increased. In proteasome-inhibited cultured human muscle fibers: (i) Herp immunoreactivity was in the form of aggregates; (ii) Herp protein was increased, but its mRNA was not. Accordingly, in s-IBM muscle fibers: (i) increase of Herp might be due to both ER-stress and proteasome inhibition; (ii) co-localization of Herp with Abeta, proteasome, and ER-chaperone GRP78 could reflect its possible role in processing and degradation of cytotoxic proteins in ER.[1]


WikiGenes - Universities