The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Muscle Fibers

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Muscle Fibers


Psychiatry related information on Muscle Fibers


High impact information on Muscle Fibers

  • All muscle fibers use Ca(2+) as their main regulatory and signaling molecule [7].
  • When Foxo activation is blocked by a dominant-negative construct in myotubes or by RNAi in mouse muscles in vivo, atrogin-1 induction during starvation and atrophy of myotubes induced by glucocorticoids are prevented [8].
  • Here, we show that in cultured myotubes undergoing atrophy, the activity of the PI3K/AKT pathway decreases, leading to activation of Foxo transcription factors and atrogin-1 induction [8].
  • Moreover, constitutively active Foxo3 acts on the atrogin-1 promoter to cause atrogin-1 transcription and dramatic atrophy of myotubes and muscle fibers [8].
  • These data demonstrate that following myotube formation, myotubes recruit myoblast fusion by secretion of IL-4, leading to muscle growth [9].

Chemical compound and disease context of Muscle Fibers


Biological context of Muscle Fibers


Anatomical context of Muscle Fibers


Associations of Muscle Fibers with chemical compounds

  • Direct observation of the rapid aggregation of acetylcholine receptors on identified cultured myotubes after exposure to embryonic brain extract [25].
  • We conclude that the 16S enzyme in C2 myotubes occurs in focal patches on the cell surface, where it is associated with the extracellular matrix [26].
  • However, creatine kinase activity rises during myotube formation and then drops abnormally, and myokinase activity fails to increase appreciably [27].
  • RSV transformation, phorbol myristate acetate (PMA) and retinoic acid all induced high levels of plasminogen activator production by differentiating myotubes in the absence of DNA synthesis [28].
  • A glycoprotein purified from chick brain, of relative molecular mass 42,000, increases the rate of appearance of acetylcholine receptors (AChRs) on the surface of chick myotubes [29].

Gene context of Muscle Fibers

  • These results indicate that type I myotubes are dependent upon Egr3-mediated transcription for proper spindle development [30].
  • These are two essential functions of muscle fibers, known to be impaired in mdx mouse muscles and Duchenne muscular dystrophy (DMD) patients [31].
  • Thus, although p107 could substitute for Rb as a cofactor for differentiation, it could not maintain the terminally differentiated state in Rb-/- myotubes [18].
  • The Drosophila neuregulin homolog Vein mediates inductive interactions between myotubes and their epidermal attachment cells [32].
  • However, these partially differentiated cells are unable to undergo further differentiation to form muscle fibers in the absence of mef2 [33].

Analytical, diagnostic and therapeutic context of Muscle Fibers


  1. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Graham, B.H., Waymire, K.G., Cottrell, B., Trounce, I.A., MacGregor, G.R., Wallace, D.C. Nat. Genet. (1997) [Pubmed]
  2. Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease. Levine, S., Kaiser, L., Leferovich, J., Tikunov, B. N. Engl. J. Med. (1997) [Pubmed]
  3. Myasthenia gravis serum reduces acetylcholine sensitivity in cultured rat myotubes. Anwyl, R., Appel, S.M., Narahashi, T. Nature (1977) [Pubmed]
  4. Is the acetylcholine receptor a rabies virus receptor? Lentz, T.L., Burrage, T.G., Smith, A.L., Crick, J., Tignor, G.H. Science (1982) [Pubmed]
  5. A factor from neurons induces partial immobilization of nonclustered acetylcholine receptors on cultured muscle cells. Axelrod, D., Bauer, H.C., Stya, M., Christian, C.N. J. Cell Biol. (1981) [Pubmed]
  6. Amyloid-beta deposition in skeletal muscle of transgenic mice: possible model of inclusion body myopathy. Fukuchi, K., Pham, D., Hart, M., Li, L., Lindsey, J.R. Am. J. Pathol. (1998) [Pubmed]
  7. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Berchtold, M.W., Brinkmeier, H., Müntener, M. Physiol. Rev. (2000) [Pubmed]
  8. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Sandri, M., Sandri, C., Gilbert, A., Skurk, C., Calabria, E., Picard, A., Walsh, K., Schiaffino, S., Lecker, S.H., Goldberg, A.L. Cell (2004) [Pubmed]
  9. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Horsley, V., Jansen, K.M., Mills, S.T., Pavlath, G.K. Cell (2003) [Pubmed]
  10. Activation of protein kinase C zeta induces serine phosphorylation of VAMP2 in the GLUT4 compartment and increases glucose transport in skeletal muscle. Braiman, L., Alt, A., Kuroki, T., Ohba, M., Bak, A., Tennenbaum, T., Sampson, S.R. Mol. Cell. Biol. (2001) [Pubmed]
  11. Myogenic Akt signaling regulates blood vessel recruitment during myofiber growth. Takahashi, A., Kureishi, Y., Yang, J., Luo, Z., Guo, K., Mukhopadhyay, D., Ivashchenko, Y., Branellec, D., Walsh, K. Mol. Cell. Biol. (2002) [Pubmed]
  12. Fibrosis-induced reduction of endomyocardium in the rat after isoproterenol treatment. Jalil, J.E., Janicki, J.S., Pick, R., Abrahams, C., Weber, K.T. Circ. Res. (1989) [Pubmed]
  13. Apolipoprotein E and apolipoprotein E messenger RNA in muscle of inclusion body myositis and myopathies. Mirabella, M., Alvarez, R.B., Engel, W.K., Weisgraber, K.H., Askanas, V. Ann. Neurol. (1996) [Pubmed]
  14. Zidovudine-induced mitochondrial myopathy is associated with muscle carnitine deficiency and lipid storage. Dalakas, M.C., Leon-Monzon, M.E., Bernardini, I., Gahl, W.A., Jay, C.A. Ann. Neurol. (1994) [Pubmed]
  15. Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Rosen, G.D., Sanes, J.R., LaChance, R., Cunningham, J.M., Roman, J., Dean, D.C. Cell (1992) [Pubmed]
  16. Connectin: a homophilic cell adhesion molecule expressed on a subset of muscles and the motoneurons that innervate them in Drosophila. Nose, A., Mahajan, V.B., Goodman, C.S. Cell (1992) [Pubmed]
  17. Synapse elimination in neonatal rat muscle is sensitive to pattern of muscle use. Thompson, W. Nature (1983) [Pubmed]
  18. Reversal of terminal differentiation mediated by p107 in Rb-/- muscle cells. Schneider, J.W., Gu, W., Zhu, L., Mahdavi, V., Nadal-Ginard, B. Science (1994) [Pubmed]
  19. Regulation of tyrosine phosphorylation of the nicotinic acetylcholine receptor at the rat neuromuscular junction. Qu, Z.C., Moritz, E., Huganir, R.L. Neuron (1990) [Pubmed]
  20. Myoblast transfer in the treatment of Duchenne's muscular dystrophy. Mendell, J.R., Kissel, J.T., Amato, A.A., King, W., Signore, L., Prior, T.W., Sahenk, Z., Benson, S., McAndrew, P.E., Rice, R. N. Engl. J. Med. (1995) [Pubmed]
  21. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Vicart, P., Caron, A., Guicheney, P., Li, Z., Prévost, M.C., Faure, A., Chateau, D., Chapon, F., Tomé, F., Dupret, J.M., Paulin, D., Fardeau, M. Nat. Genet. (1998) [Pubmed]
  22. Agrin mediates cell contact-induced acetylcholine receptor clustering. Campanelli, J.T., Hoch, W., Rupp, F., Kreiner, T., Scheller, R.H. Cell (1991) [Pubmed]
  23. The existence of an insoluble Z disc scaffold in chicken skeletal muscle. Granger, B.L., Lazarides, E. Cell (1978) [Pubmed]
  24. Aggregates of acetylcholinesterase induced by acetylcholine receptor-aggregating factor. Wallace, B.G., Nitkin, R.M., Reist, N.E., Fallon, J.R., Moayeri, N.N., McMahan, U.J. Nature (1985) [Pubmed]
  25. Direct observation of the rapid aggregation of acetylcholine receptors on identified cultured myotubes after exposure to embryonic brain extract. Olek, A.J., Pudimat, P.A., Daniels, M.P. Cell (1983) [Pubmed]
  26. Association of the synaptic form of acetylcholinesterase with extracellular matrix in cultured mouse muscle cells. Inestrosa, N.C., Silberstein, L., Hall, Z.W. Cell (1982) [Pubmed]
  27. Creatine kinase, myokinase, and acetylcholinesterase activities in muscle-forming primary cultures of mouse teratocarcinoma cells. Gearhart, J.D., Mintz, B. Cell (1975) [Pubmed]
  28. Plasminogen activator in chick embryo muscle cells: induction of enzyme by RSV, PMA and retinoic acid. Miskin, R., Easton, T.G., Reich, E. Cell (1978) [Pubmed]
  29. Differential activation of myotube nuclei following exposure to an acetylcholine receptor-inducing factor. Harris, D.A., Falls, D.L., Fischbach, G.D. Nature (1989) [Pubmed]
  30. Sensory ataxia and muscle spindle agenesis in mice lacking the transcription factor Egr3. Tourtellotte, W.G., Milbrandt, J. Nat. Genet. (1998) [Pubmed]
  31. Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Deconinck, N., Tinsley, J., De Backer, F., Fisher, R., Kahn, D., Phelps, S., Davies, K., Gillis, J.M. Nat. Med. (1997) [Pubmed]
  32. The Drosophila neuregulin homolog Vein mediates inductive interactions between myotubes and their epidermal attachment cells. Yarnitzky, T., Min, L., Volk, T. Genes Dev. (1997) [Pubmed]
  33. Drosophila MEF2, a transcription factor that is essential for myogenesis. Bour, B.A., O'Brien, M.A., Lockwood, W.L., Goldstein, E.S., Bodmer, R., Taghert, P.H., Abmayr, S.M., Nguyen, H.T. Genes Dev. (1995) [Pubmed]
  34. Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Fu, A.K., Fu, W.Y., Cheung, J., Tsim, K.W., Ip, F.C., Wang, J.H., Ip, N.Y. Nat. Neurosci. (2001) [Pubmed]
  35. The putative agrin receptor binds ligand in a calcium-dependent manner and aggregates during agrin-induced acetylcholine receptor clustering. Nastuk, M.A., Lieth, E., Ma, J.Y., Cardasis, C.A., Moynihan, E.B., McKechnie, B.A., Fallon, J.R. Neuron (1991) [Pubmed]
  36. Agrin released by motor neurons induces the aggregation of acetylcholine receptors at neuromuscular junctions. Reist, N.E., Werle, M.J., McMahan, U.J. Neuron (1992) [Pubmed]
  37. Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. Vandebrouck, C., Martin, D., Colson-Van Schoor, M., Debaix, H., Gailly, P. J. Cell Biol. (2002) [Pubmed]
  38. Cell-substrate contacts illuminated by total internal reflection fluorescence. Axelrod, D. J. Cell Biol. (1981) [Pubmed]
WikiGenes - Universities