The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Liddle's syndrome mutations increase Na+ transport through dual effects on epithelial Na+ channel surface expression and proteolytic cleavage.

Liddle's syndrome, an inherited form of hypertension, is caused by mutations that delete or disrupt a C-terminal PY motif in the epithelial Na+ channel (ENaC). Previous work indicates that these mutations increase expression of ENaC at the cell surface by disrupting its binding to Nedd4-2, an E3 ubiquitin-protein ligase that targets ENaC for degradation. However, it remains uncertain whether this mechanism alone is responsible; increased activity of ENaC channels could also contribute to excessive Na+ transport in Liddle's syndrome. ENaC activity is controlled in part by its cleavage state; proteolytic cleavage produces channels with a high open-state probability, whereas uncleaved channels are inactive. Here, we found that Liddle's syndrome mutations have two distinct effects of ENaC surface expression, both of which contribute to increased Na+ transport. First, these mutations increased ENaC expression at the cell surface; second, they increased the fraction of ENaC at the cell surface that was cleaved (active). This disproportionate increase in cleavage was reproduced by expression of a dominant-negative Nedd4-2 or mutation of ENaC ubiquitination sites, interventions that disrupt ENaC endocytosis and lysosomal degradation. Conversely, overexpression of Nedd4-2 had the opposite effect, decreasing the fraction of cleaved ENaC at the cell surface. Thus, the data not only suggest that Nedd4-2 regulates epithelial Na+ transport in part by controlling the relative expression of cleaved and uncleaved ENaC at the cell surface but also provide a mechanism by which Liddle's syndrome mutations alter ENaC activity.[1]

References

 
WikiGenes - Universities