The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Low extracellular calcium is sufficient for survival and proliferation of murine mesencephalic neural precursor cells.

Various media and Ca(2+) concentrations are employed to culture neural progenitor cells (NPCs). We have therefore explored the effects of extracellular calcium concentrations on the survival, proliferation, spontaneous apoptosis and self-renewal capacity of mesencephalic NPCs grown adherently and as free-floating neurospheres. We employed EMEM supplemented with various concentrations of extracellular CaCl(2) (0.1-1 mM). Raising the calcium concentration from 0.1 mM to 0.6 mM resulted in an increased number of NPCs growing as a monolayer and increased the protein yield of cells growing in neurospheres (24+/-3 mug total proteins in 0.1 mM Ca(2+) medium vs. 316+/-34 mug proteins in 1 mM Ca(2+) medium). Concentrations more than 0.6 mM did not result in a further improvement of proliferation or survival. Elimination of calcium from our control medium by 1 mM EGTA resulted in a decrease in cell number from 82+/-2x10(4) NPCs/ml observed in control medium to 62+/-2x10(4) NPCs/ml observed in calcium-free media. Protein yield dropped significantly in calcium-free media, accompanied by the decreased expression of the proliferation marker PCNA and the pro-survival marker Bcl-2. Two weeks of expansion as neurospheres caused spontaneous cell death in more than 90% of NPCs grown in 0.1 mM CaCl(2) EMEM compared with 42% in 1 mM CaCl(2) EMEM. Although the action of Ca(2+) on NPCs appears to be complex, the presented data strongly suggest that extracellular calcium plays a crucial role in the maintenance of NPCs in a healthy and proliferating state; physiological concentrations (>1.0 mM) are not required, a concentration of 0.5 mM being adequate for cell maintenance.[1]

References

 
WikiGenes - Universities