The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Notch and NGF/p75NTR control dendrite morphology and the balance of excitatory/inhibitory synaptic input to hippocampal neurones through Neurogenin 3.

We have previously shown that dendrite morphology of cultured hippocampal neurones is controlled by Notch receptor activation or binding of nerve growth factor (NGF) to its low affinity receptor p75NTR, i.e. processes that up-regulate the expression of the Homologue of enhancer of split 1 and 5. Thus, the increased expression of these genes decreases the number of dendrites, whereas abrogation of Homologue of enhancer of split 1/5 activity stimulates the outgrowth of new dendrites. Here, we show that Neurogenin 3 is a proneural gene that is negatively regulated by Homologue of enhancer of split 1/5. It also influences dendrite morphology. Hence, a deficit of Notch or NGF/p75NTR activation can lead to the production of high levels of Neurogenin 3, which stimulates the outgrowth of new dendrites. Conversely, activation of either Notch or p75NTR depressed Neurogenin 3 expression, which not only decreased the number of dendrites but also favoured inhibitory (GABAergic) synaptogenesis, thereby diminishing the ratios of excitatory/inhibitory inputs. NGF also augmented the levels of mRNA encoding the vesicular inhibitory amino acid transporter, but it did not affect the fraction of GAD65/67-positive neurones. Conversely, overexpression of Neurogenin 3 largely reduced the number of inhibitory synaptic contacts and, consequently, produced a strong increase in the ratios of excitatory/inhibitory synaptic terminals. Our results reveal a hitherto unknown contribution of NGF/p75NTR to dendritic and synaptic plasticity through Neurogenin 3 signalling.[1]

References

 
WikiGenes - Universities