The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Dendrites


Psychiatry related information on Dendrites


High impact information on Dendrites

  • We previously showed that collapsin response mediator protein-2 (CRMP-2) is critical for specifying axon/dendrite fate, possibly by promoting neurite elongation via microtubule assembly [11].
  • Dendrites of fry and trc mutants display excessive terminal branching and fail to avoid homologous dendritic branches, resulting in significant overlap of the dendritic fields [12].
  • We show here that neurexin alone is sufficient to induce glutamate postsynaptic differentiation in contacting dendrites [13].
  • Formation of synaptic connections requires alignment of neurotransmitter receptors on postsynaptic dendrites opposite matching transmitter release sites on presynaptic axons. beta-neurexins and neuroligins form a trans-synaptic link at glutamate synapses [13].
  • Biochemical and immunocytochemical analysis demonstrates that in VNO sensory dendrites M10s belong to large multi-molecular complexes that include pheromone receptors and beta2-microglobulin (beta2m) [14].

Chemical compound and disease context of Dendrites

  • The findings further suggest that the directional responses of DS ganglion cells are mediated in part by the directional release of gamma-aminobutyric acid from starburst dendrites and that the asymmetric distribution of the two cotransporters along starburst-cell dendrites mediates direction selectivity [15].
  • In this paper we show that in the Bomirski amelanotic melanoma system MSH and agents that raise intracellular cyclic AMP induce dendrite formation, inhibit cell growth, and cause substantial increases in tyrosinase activity without inducing melanin synthesis [16].
  • Our observations help explain the pharmacology of the competitive NMDA antagonists against NMDA receptor-mediated neurotoxicity but also suggest the possibility that, because the cell body and dendrites may be distinct sites for neurotoxicity, they might also involve different mechanisms of toxicity [17].
  • Central VP release from MNC somata and dendrites is stimulated by both dehydration and pituitary adenylate cyclase activating polypeptide (PACAP) [18].
  • The absence of reinnervation of bipolar cell dendrites by DA-IPCs may account for the persistence of the increased light sensitivity following retinal dopamine depletion [19].

Biological context of Dendrites


Anatomical context of Dendrites


Associations of Dendrites with chemical compounds

  • Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases [30].
  • Morphological substrates for DA storage exist in dendrites, as do dendro-dendritic and dendro-axonic contacts [29].
  • Here we show that neurotransmission-evoked calcium (Ca(2+)) release from intracellular stores stabilizes dendrites during the period of synapse formation [31].
  • At the molecular level, LTD appears to be caused by desensitization of receptor molecules in PC dendrites towards the PF neurotransmitter, presumably L-glutamate (Glu) [32].
  • Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites [33].

Gene context of Dendrites

  • In the developing cerebellum, DNER is highly expressed in Purkinje cell dendrites, which are tightly associated with radial fibers of Bergmann glia expressing Notch [34].
  • We found that the cell-surface molecules Frazzled and Robo work as guidance molecules not only for axons but also for dendrites as they navigate within the CNS [35].
  • Baz, Par-6 and aPKC are not required for axon or dendrite specification in Drosophila [36].
  • Using 12P3, we demonstrate that a brief exposure of a rat cerebellar slice to AMPA leads to transient phosphorylation of the GluR subunits in Purkinje cell dendrites [37].
  • Destabilization of cortical dendrites and spines by BDNF [38].

Analytical, diagnostic and therapeutic context of Dendrites


  1. Stratification of ON and OFF ganglion cell dendrites depends on glutamate-mediated afferent activity in the developing retina. Bodnarenko, S.R., Chalupa, L.M. Nature (1993) [Pubmed]
  2. Polarized sorting of glypiated proteins in hippocampal neurons. Dotti, C.G., Parton, R.G., Simons, K. Nature (1991) [Pubmed]
  3. The fragile X mental retardation protein and group I metabotropic glutamate receptors regulate levels of mRNA granules in brain. Aschrafi, A., Cunningham, B.A., Edelman, G.M., Vanderklish, P.W. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  4. Prevention of anthracycline-induced cytotoxicity in hemopoietic cells by hemin. Tsiftsoglou, A.S., Wong, W., Wheeler, C., Steinberg, H.N., Robinson, S.H. Cancer Res. (1986) [Pubmed]
  5. Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. Takeuchi, H., Mizuno, T., Zhang, G., Wang, J., Kawanokuchi, J., Kuno, R., Suzumura, A. J. Biol. Chem. (2005) [Pubmed]
  6. Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer's disease. Selkoe, D.J., Bell, D.S., Podlisny, M.B., Price, D.L., Cork, L.C. Science (1987) [Pubmed]
  7. Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein. Ling, S.C., Fahrner, P.S., Greenough, W.T., Gelfand, V.I. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  8. Transient decrease in calbindin immunoreactivity of the rat fascia dentata granule cells after repeated electroconvulsive shocks. Tønder, N., Kragh, J., Bolwig, T., Zimmer, J. Hippocampus. (1994) [Pubmed]
  9. Different combinations of GABAA and GABAC receptors confer distinct temporal properties to retinal synaptic responses. Lukasiewicz, P.D., Shields, C.R. J. Neurophysiol. (1998) [Pubmed]
  10. Thyrotropin-releasing hormone-immunoreactive nerve terminals synapse on the dendrites of gastric vagal motoneurons in the rat. Rinaman, L., Miselis, R.R. J. Comp. Neurol. (1990) [Pubmed]
  11. GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Yoshimura, T., Kawano, Y., Arimura, N., Kawabata, S., Kikuchi, A., Kaibuchi, K. Cell (2005) [Pubmed]
  12. Control of dendritic branching and tiling by the Tricornered-kinase/Furry signaling pathway in Drosophila sensory neurons. Emoto, K., He, Y., Ye, B., Grueber, W.B., Adler, P.N., Jan, L.Y., Jan, Y.N. Cell (2004) [Pubmed]
  13. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Graf, E.R., Zhang, X., Jin, S.X., Linhoff, M.W., Craig, A.M. Cell (2004) [Pubmed]
  14. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Loconto, J., Papes, F., Chang, E., Stowers, L., Jones, E.P., Takada, T., Kumánovics, A., Fischer Lindahl, K., Dulac, C. Cell (2003) [Pubmed]
  15. Cation--chloride cotransporters mediate neural computation in the retina. Gavrikov, K.E., Dmitriev, A.V., Keyser, K.T., Mangel, S.C. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  16. MSH inhibits growth in a line of amelanotic hamster melanoma cells and induces increases in cyclic AMP levels and tyrosinase activity without inducing melanogenesis. Slominski, A., Moellmann, G., Kuklinska, E. J. Cell. Sci. (1989) [Pubmed]
  17. Comparison of the potency of competitive NMDA antagonists against the neurotoxicity of glutamate and NMDA. Speliotes, E.K., Hartnett, K.A., Blitzblau, R.C., Aizenman, E., Rosenberg, P.A. J. Neurochem. (1994) [Pubmed]
  18. A novel role for endogenous pituitary adenylate cyclase activating polypeptide in the magnocellular neuroendocrine system. Gillard, E.R., León-Olea, M., Mucio-Ramírez, S., Coburn, C.G., Sánchez-Islas, E., de Leon, A., Mussenden, H., Bauce, L.G., Pittman, Q.J., Currás-Collazo, M.C. Endocrinology (2006) [Pubmed]
  19. Differential reinnervation of retinal bipolar cell dendrites and axon terminals by dopamine interplexiform cells following dopamine depletion with 6-OHDA. Yazulla, S., Studholme, K.M. J. Comp. Neurol. (1997) [Pubmed]
  20. Facilitation of dendritic mRNA transport by CPEB. Huang, Y.S., Carson, J.H., Barbarese, E., Richter, J.D. Genes Dev. (2003) [Pubmed]
  21. GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking. Hoogenraad, C.C., Milstein, A.D., Ethell, I.M., Henkemeyer, M., Sheng, M. Nat. Neurosci. (2005) [Pubmed]
  22. Protein kinase C modulates NMDA receptor trafficking and gating. Lan , J.Y., Skeberdis, V.A., Jover, T., Grooms, S.Y., Lin, Y., Araneda, R.C., Zheng, X., Bennett, M.V., Zukin, R.S. Nat. Neurosci. (2001) [Pubmed]
  23. Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Niu, S., Renfro, A., Quattrocchi, C.C., Sheldon, M., D'Arcangelo, G. Neuron (2004) [Pubmed]
  24. Olfactory reciprocal synapses: dendritic signaling in the CNS. Isaacson, J.S., Strowbridge, B.W. Neuron (1998) [Pubmed]
  25. From lineage to wiring specificity. POU domain transcription factors control precise connections of Drosophila olfactory projection neurons. Komiyama, T., Johnson, W.A., Luo, L., Jefferis, G.S. Cell (2003) [Pubmed]
  26. Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CA1 pyramidal cell dendrites. Regehr, W.G., Tank, D.W. Nature (1990) [Pubmed]
  27. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Luo, L., Hensch, T.K., Ackerman, L., Barbel, S., Jan, L.Y., Jan, Y.N. Nature (1996) [Pubmed]
  28. Release of dopamine from dendrites in rat substantia nigra. Geffen, L.B., Jessell, T.M., Cuello, A.C., Iversen, L.L. Nature (1976) [Pubmed]
  29. Dopaminergic activation of reticulata neurones in the substantia nigra. Ruffieux, A., Schultz, W. Nature (1980) [Pubmed]
  30. Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Sin, W.C., Haas, K., Ruthazer, E.S., Cline, H.T. Nature (2002) [Pubmed]
  31. Transmitter-evoked local calcium release stabilizes developing dendrites. Lohmann, C., Myhr, K.L., Wong, R.O. Nature (2002) [Pubmed]
  32. Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Kano, M., Kato, M. Nature (1987) [Pubmed]
  33. Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Finch, E.A., Augustine, G.J. Nature (1998) [Pubmed]
  34. DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Eiraku, M., Tohgo, A., Ono, K., Kaneko, M., Fujishima, K., Hirano, T., Kengaku, M. Nat. Neurosci. (2005) [Pubmed]
  35. Robo and Frazzled/DCC mediate dendritic guidance at the CNS midline. Furrer, M.P., Kim, S., Wolf, B., Chiba, A. Nat. Neurosci. (2003) [Pubmed]
  36. Baz, Par-6 and aPKC are not required for axon or dendrite specification in Drosophila. Rolls, M.M., Doe, C.Q. Nat. Neurosci. (2004) [Pubmed]
  37. Transient and persistent phosphorylation of AMPA-type glutamate receptor subunits in cerebellar Purkinje cells. Nakazawa, K., Mikawa, S., Hashikawa, T., Ito, M. Neuron (1995) [Pubmed]
  38. Destabilization of cortical dendrites and spines by BDNF. Horch, H.W., Krüttgen, A., Portbury, S.D., Katz, L.C. Neuron (1999) [Pubmed]
  39. Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Chen, W.R., Midtgaard, J., Shepherd, G.M. Science (1997) [Pubmed]
  40. Distinct spatial localization of specific mRNAs in cultured sympathetic neurons. Bruckenstein, D.A., Lein, P.J., Higgins, D., Fremeau, R.T. Neuron (1990) [Pubmed]
  41. Cell-cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Baptista, C.A., Hatten, M.E., Blazeski, R., Mason, C.A. Neuron (1994) [Pubmed]
  42. Microtubule destabilization and neurofilament phosphorylation precede dendritic sprouting after close axotomy of lamprey central neurons. Hall, G.F., Lee, V.M., Kosik, K.S. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  43. Rapid acquisition of dendritic spines by visual thalamic neurons after blockade of N-methyl-D-aspartate receptors. Rocha, M., Sur, M. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
WikiGenes - Universities