The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Hysteretic behavior of the hepatic microsomal glucose-6-phosphatase system.

Carbamyl-P:glucose and PPi:glucose phosphotransferase, but not inorganic pyrophosphatase, activities of the hepatic microsomal glucose-6-phosphatase system demonstrate a time-dependent lag in product production with 1 mM phosphate substrate. Glucose-6-P phosphohydrolase shows a similar behavior with [glucose-6-P] less than or equal to 0.10 mM, but inorganic pyrophosphatase activity does not even at the 0.05 or 0.02 mM level. The hysteretic behavior is abolished when the structural integrity of the microsomes is destroyed by detergent treatment. Calculations indicate that an intramicrosomal glucose-6-P concentration of between 20 and 40 microM must be achieved, whether in response to exogenously added glucose-6-P or via intramicrosomal synthesis by carbamyl-P:glucose or PPi:glucose phosphotransferase activity, before the maximally active form of the enzyme system is achieved. It is suggested that translocase T1, the transport component of the glucose-6-phosphatase system specific for glucose-6-P, is the target for activation by these critical intramicrosomal concentrations of glucose-6-P.[1]

References

  1. Hysteretic behavior of the hepatic microsomal glucose-6-phosphatase system. Foster, J.D., Nelson, K.L., Sukalski, K.A., Lucius, R.W., Nordlie, R.C. Biochim. Biophys. Acta (1991) [Pubmed]
 
WikiGenes - Universities