The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The Src family kinase, Lyn, is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors which stimulate its association with numerous other signaling molecules.

Src family kinases (SFK) play a central signaling role for growth factors, cytokines, G-protein-coupled receptors and other stimuli. SFKs play important roles in pancreatic acinar cell secretion, endocytosis, growth, cytoskeletal integrity and apoptosis, although little is known of the specific SFKs involved. In this study we demonstrate the SFK, Lyn, is present in rat pancreatic acini and investigate its activation/signaling. Ca(2+)-mobilizing agents, cAMP-mobilizing agents and pancreatic growth factors activated Lyn. CCK, a physiological regulator of pancreatic function, rapidly activated Lyn. The specific SFK inhibitor, PP2, decreased Lyn activation; however, the inactive analogue, PP3, had no effect. Inhibition of CCK- stimulated changes in [Ca(2+)](i) decreased Lyn activation by 55%; GFX, a PKC inhibitor by 36%; and the combination by 95%. CCK activation of Lyn required stimulation of high and low affinity CCK(A) receptor states. CCK stimulated an association of Lyn with PKC-delta, Shc, p125(FAK) and PYK2 as well as with their autophosphorylated forms, but not with Cbl, p85, p130(CAS) or ERK 1/2. These results show Lyn is activated by diverse pancreatic stimulants. CCK's activation of Lyn is likely an important mediator of its ability to cause tyrosine phosphorylation of numerous important cellular mediators such as p125(FAK), PYK2, PKC-delta and Shc, which play central roles in CCK's effects on acinar cell function.[1]


WikiGenes - Universities