The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

N-glycosylation of murine IFN-beta in a putative receptor-binding region.

Human and mouse genomes contain more than 20 related genes encoding diverse type I interferons (IFNs- alpha/beta), cytokines that are crucial for resistance of organisms against viral infections. Although the amino acid sequences of various IFN-alpha/beta subtypes differ markedly, they are all considered to share a common three-dimensional structure and to bind the same heterodimeric receptor, composed of the IFNAR-1 and IFNAR-2 subunits. Analysis of available mammalian IFN-beta sequences showed that they all carry 1 to 5 predicted N-glycosylation sites. Murine IFN-beta contains three predicted N-glycosylation sites (Asn29, Asn69, Asn76), one of which (Asn29) is located in the AB loop, in a region predicted to interact with the type I IFN receptor. The aim of this work was to test if this site is indeed N-glycosylated and if this glycosylation would affect IFN antiviral activity. We showed that all three N-glycosylation sites predicted from the sequence, including Asn29, carry N-linked sugars. Mutation of individual N-glycosylation sites had a weak negative influence on IFN antiviral activity. In contrast, the complete loss of glycosylation dramatically decreased activity. Our data suggest that interaction of murine IFN-beta with the IFNAR could locally differ from that of human IFN-alpha2 and human IFN-beta.[1]

References

  1. N-glycosylation of murine IFN-beta in a putative receptor-binding region. Sommereyns, C., Michiels, T. J. Interferon Cytokine Res. (2006) [Pubmed]
 
WikiGenes - Universities