The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

AKT activation in human glioblastomas enhances proliferation via TSC2 and S6 kinase signaling.

Aberrant AKT (protein kinase B) signaling is common in many cancers, including glioblastoma. Current models suggest that AKT acts directly, or indirectly via the TSC complex, to activate the mammalian target of rapamycin (mTOR) as the main downstream mediator of AKT signaling. mTOR activation results in subsequent activation of S6K and STAT3, as well as suppression (i.e., phosphorylation) of 4E-BP1, leading to cell cycle progression and inhibition of apoptosis. Most studies of this pathway have used in vitro systems or tumor lysate-based approaches. We aimed to delineate these pathways in a primarily in situ manner using immunohistochemistry in a panel of 29 glioblastomas, emphasizing the histologic distribution of molecular changes. Within individual tumors, increased expression levels of p-TSC2, p-mTOR, p-4E-BP1, p-S6K, p-S6, and p-STAT3 were found in regions defined by elevated AKT activation. However, only TSC2, S6K, and S6 activation levels correlated significantly with AKT activation and clustered together in multidimensional scaling analyses. Ki-67 proliferation indices were significantly elevated in p-AKT-overexpressing regions, whereas expression of the apoptosis marker cleaved caspase 3 was generally low and not significantly different between the regions. These findings provide the first in vivo evidence for a close correlation between AKT and TSC2 phosphorylation levels in glioblastoma. Moreover, they suggest that downstream p-AKT effects are primarily mediated by S6 kinase signaling, thus enhancing proliferation rather than inhibiting apoptosis.[1]

References

  1. AKT activation in human glioblastomas enhances proliferation via TSC2 and S6 kinase signaling. Riemenschneider, M.J., Betensky, R.A., Pasedag, S.M., Louis, D.N. Cancer Res. (2006) [Pubmed]
 
WikiGenes - Universities