The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Knockdown of MBP-1 in human prostate cancer cells delays cell cycle progression.

We have previously shown that MBP-1 acts as a general transcriptional repressor, and forced expression of MBP-1 exerts an anti-proliferative effect on a number of human cancer cells. In this report, we have investigated the role of endogenous MBP-1 in cell growth regulation. For this, we generated human prostate cancer cells (PC3) stably transfected with short hairpin RNA targeting MBP-1. We have observed retarded growth and longer doubling time of MBP-1 knockdown PC3 cells as compared with control mock-transfected PC3 cells. Fluorescence-activated cell sorter analysis suggested that PC3 cells expressing MBP-1-specific small interfering RNA accumulated during G2/M phase of the cell cycle. Further analysis suggested that depletion of MBP-1 was associated with reduction of cyclin A and cyclin B1 expression when compared with that of the control cells. A delayed induction of cyclin A and B1 expression was observed in MBP-1-depleted PC3 cells (PC3-4.2) upon serum stimulation, although the level of expression was much lower than that of control PC3 cells. Supplementation of MBP-1 in PC3-4.2 cells restored cyclin A and cyclin B1 expression. Together, these results suggest that knockdown of MBP-1 in prostate cancer cells perturbs cell proliferation by inhibiting cyclin A and cyclin B1 expression.[1]

References

  1. Knockdown of MBP-1 in human prostate cancer cells delays cell cycle progression. Ghosh, A.K., Steele, R., Ray, R.B. J. Biol. Chem. (2006) [Pubmed]
 
WikiGenes - Universities