The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The yeast potassium transporter TRK2 is able to substitute for TRK1 in its biological function under low K and low pH conditions.

In S. cerevisiae, K+ transport relies principally on two structurally related membrane proteins, known as Trk1p and Trk2p. Direct involvement in cation movements has been demonstrated for Trk1p, which is a high-affinity K+ transporter. Initially described as a low-affinity K+ transporter, Trk2p seems to play a minor role in K+ transport, since its activity is only apparent under very specific conditions, such as in a Deltasin3 background. Here we show that growth of a Deltatrk1Deltasin3 double mutant, under K+-limiting conditions or at low pH, is Trk2p-dependent, and by Northern blot analysis we demonstrate that deletion of SIN3 results in transcriptional derepression of TRK2. In addition, we show that heterologous overexpression of TRK2 with the inducible GAL1 promoter bypasses Sin3p repression in a Deltatrk1Deltatrk2 double mutant and fully restores growth under non-permissive conditions. Furthermore, kinetic experiments in a Deltatrk1Deltasin3 double mutant revealed a K+ transporter with an apparent high affinity and a moderate capacity. Taken together, these results indicate that TRK2 encodes a functional K+ transporter that, under our experimental conditions, displays distinctive kinetic characteristics.[1]

References

  1. The yeast potassium transporter TRK2 is able to substitute for TRK1 in its biological function under low K and low pH conditions. Michel, B., Lozano, C., Rodríguez, M., Coria, R., Ramírez, J., Peña, A. Yeast (2006) [Pubmed]
 
WikiGenes - Universities