The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The PDZ Scaffold NHERF-2 Interacts with mGluR5 and Regulates Receptor Activity.

The two members of the group I metabotropic glutamate receptor family, mGluR1 and mGluR5, both couple to G(q) to mediate rises in intracellular calcium. The alternatively spliced C termini ( CT) of mGluRs1&5are known to be critical for regulating receptor activity and to terminate in motifs suggestive of potential interactions with PDZ domains. We therefore screened the CTs of both mGluR1a and mGluR5 against a PDZ domain proteomic array. Out of 96 PDZ domains examined, the domain that bound most strongly to mGluR5- CT was the second PDZ domain of the Na(+)/H(+) exchanger regulatory factor 2 ( NHERF-2). This interaction was confirmed by reverse overlay, and a single point mutation to the mGluR5- CT was found to completely disrupt the interaction. Full-length mGluR5 robustly associated with full-length NHERF-2 in cells, as assessed by co-immunoprecipitation and confocal microscopy experiments. In contrast, mGluR1a was found to bind NHERF-2 in vitro with a weaker affinity than mGluR5, and furthermore mGluR1a did not detectably associate with NHERF-2 in a cellular context. Immunohistochemical experiments revealed that NHERF-2 and mGluR5 exhibit overlapping patterns of expression in mouse brain, being found most abundantly in astrocytic processes and postsynaptic neuronal elements. In functional experiments, the interaction of NHERF-2 with mGluR5 in cells was found to prolong mGluR5-mediated calcium mobilization and to also potentiate mGluR5-mediated cell death, whereas coexpression of mGluR1a with NHERF-2 had no evident effects on mGluR1a functional activity. These observations reveal that NHERF-2 can selectively modulate mGluR5 signaling, which may contribute to cell-specific regulation of mGluR5 activity.[1]


  1. The PDZ Scaffold NHERF-2 Interacts with mGluR5 and Regulates Receptor Activity. Paquet, M., Asay, M.J., Fam, S.R., Inuzuka, H., Castleberry, A.M., Oller, H., Smith, Y., Yun, C.C., Traynelis, S.F., Hall, R.A. J. Biol. Chem. (2006) [Pubmed]
WikiGenes - Universities