The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A novel synthetic mammalian promoter derived from an internal ribosome entry site.

Introduction of specific mutations into a synthetic internal ribosome entry site (IRES(GTX)) derived from the GTX homeodomain protein revealed additional transcriptional activity. This novel synthetic P(GTX) promoter exhibited consensus core promoter modules such as the initiator (Inr) and the partial downstream promoter elements (DPE) and mediated high-level expression of a variety of transgenes including the human vascular endothelial growth factor 121 (VEGF(121)), the human placental secreted alkaline phosphatase (SEAP), and the Bacillus stearothermophilus-derived secreted alpha-amylase (SAMY) in Chinese hamster ovary cells (CHO-K1) and a variety of other mammalian and human cell lines. The spacing between Inr and DPE modules was found to be critical for promoter performance since introduction of a single nucleotide (resulting in P(GTX2)) doubled the SEAP expression levels in CHO-K1. P(GTX2) reached near 70% of P(SV40)-driven expression levels and outperformed constitutive phosphoglycerate kinase (P(PGK)) and human ubiquitin C (P(hUBC)) promoters in CHO-K1. Also, P(GTX2) was successfully engineered for macrolide-inducible transgene expression. Owing to its size of only 182 bp, P(GTX2) is one of the smallest eukaryotic promoters. Although P(GTX2) was found to be a potent promoter, it retained its IRES(GTX)-specific translation-initiation capacity. Synthetic DNAs, which combine multiple activities in a most compact sequence format may foster advances in therapeutic engineering of mammalian cells. (c) 2006 Wiley Periodicals, Inc.[1]

References

  1. A novel synthetic mammalian promoter derived from an internal ribosome entry site. Hartenbach, S., Fussenegger, M. Biotechnol. Bioeng. (2006) [Pubmed]
 
WikiGenes - Universities