The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Application of the aza-achmatowicz oxidative rearrangement for the stereoselective synthesis of the cassia and prosopis alkaloid family.

cis-2-Methyl-6-substituted piperidin-3-ol alkaloids of the Cassia and Prosopis species are readily prepared by a combination of an aza-Achmatowicz oxidative rearrangement and dihydropyridone reduction followed by a stereoselective allylsilane addition to a N-sulfonyliminium ion. The stereochemical outcome of the reduction reaction can be attributed to steric hindrance between the pseudoaxially oriented 2,6-substituents and the equatorially approaching hydride reagent which explains the exclusive formation of the cis-alcohol by axial approach of the hydride. The unsaturation present in the (E)-methyl-pent-3-enoate side chain was removed by catalytic reduction, and the remaining ester group was converted to the corresponding Weinreb's amide. This key intermediate was utilized for the synthesis of azimic acid, deoxocassine, cassine, and spicigerine. The facile preparation of (S)-N-tosylamidofuran 16 and its conversion to the chiral Achmatowicz oxidation product 18 provide a formal chiral synthesis of these alkaloids.[1]

References

 
WikiGenes - Universities