Separation of acidic and basic proteins by nanoparticle-filled capillary electrophoresis.
We present the first example of the analysis of acidic and basic proteins by nanoparticle-filled capillary electrophoresis. Compared to the didodecyldimethylammonium bromide (DDAB)-coated capillary, the DDAB-capped gold nanoparticles (AuNPs) as pseudostationary phase were found to form more stable coating on the capillary wall, thus leading to greater separation efficiency and high reproducibility. In addition to their advantages for protein separation, DDAB-capped AuNPs can generate high reversed electroosmotic flow, which is 75% greater than DDAB at pH 3. 5. To allow strong interactions with proteins, the AuNPs were modified with poly(ethylene oxide) via noncovalent bonding to form gold nanoparticles/polymer composites (AuNPPs). Using a capillary dynamically coated with DDAB-capped AuNPs and filled with AuNPPs under acidic conditions (10 mM phosphate, pH 3.5), we have demonstrated the separation of acidic and basic proteins with peak efficiencies ranging from 71 000 to 1 007 000 plates/m and relative standard deviations of migration time less than 0.6%. Additionally, the proposed method has been applied to the analyses of biological samples, including saliva, red blood cells, and plasma. With simplicity, high resolving power, and high reproducibility, the proposed method has shown great potential for proteomics applications and clinical diagnosis.[1]References
- Separation of acidic and basic proteins by nanoparticle-filled capillary electrophoresis. Yu, C.J., Su, C.L., Tseng, W.L. Anal. Chem. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg