The Arginine Methyltransferase CARM1 Regulates the Coupling of Transcription and mRNA Processing.
The coactivator-associated arginine methyltransferase CARM1 is recruited by many different transcription factors as a positive regulator. To understand the mechanism by which CARM1 functions, we sought to isolate its substrates. We developed a small-pool screening approach for this purpose and identified CA150, SAP49, SmB, and U1C as splicing factors that are specifically methylated by CARM1. We further showed that CA150, a molecule that links transcription to splicing, interacts with the Tudor domain of the spinal muscular atrophy protein SMN in a CARM1-dependent fashion. Experiments with an exogenous splicing reporter and the endogenous CD44 gene revealed that CARM1 promotes exon skipping in an enzyme-dependent manner. The identification of splicing factors that are methylated by CARM1, and protein-protein interactions that are regulated by CARM1, strongly implicates this enzyme in the regulation of alternative splicing and points toward its involvement in spinal muscular atrophy pathogenesis.[1]References
- The Arginine Methyltransferase CARM1 Regulates the Coupling of Transcription and mRNA Processing. Cheng, D., C??t??, J., Shaaban, S., Bedford, M.T. Mol. Cell (2007) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg