Cartilage regeneration by novel polyethylene oxide/chitin/chitosan scaffolds.
This study presents the application of novel PEO/chitin/chitosan scaffolds for the cultivation of bovine knee chondrocytes (BKCs). The results reveled that the composition strongly affected physicochemical characteristics of the ternary scaffolds. Based on the contours of porosity, the percentage of void space in these scaffolds was estimated to be higher than 90%. In regard to mechanical strength, the composition of 50% chitin and 50% chitosan in the scaffold led to the maximum of Young's modulus. Moreover, large extensibility of the scaffolds occurred at the following range of the composition: PEO > 37.5%, chitin < 25%, and chitosan <62.5%. After cultivation of BKCs over 4 weeks, the percentage of biodegradation was normally between 30 and 60%. The formation of neocartilage was assessed by the amounts of BKCs, glycosaminoglycans and collagens in the cultured BKC-polymer constructs. Better chondrogenesis was obtained at the following range of the composition: 25% < PEO < 40%, 12.5% < chitin < 37.5%, and 30% < chitosan < 50%. Thus, the regeneration of cartilaginous components could be manipulated simply by controlling the composition of PEO, chitin, and chitosan in the hybrid scaffolds.[1]References
- Cartilage regeneration by novel polyethylene oxide/chitin/chitosan scaffolds. Kuo, Y.C., Ku, I.N. Biomacromolecules (2008) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg