The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Chondrogenesis


High impact information on Chondrogenesis

  • During chondrogenesis in the mouse, Sox9 is co-expressed with Col2a1, the gene encoding type-II collagen, the major cartilage matrix protein [6].
  • These results demonstrate that COL2A1 expression is directly regulated by SOX9 protein in vivo and implicate abnormal regulation of COL2A1 during, chondrogenesis as a cause of the skeletal abnormalities associated with campomelic dysplasia [6].
  • The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos [7].
  • Our results strongly suggest that chondrogenesis is controlled by interactions between Sox9 and the Wnt/beta-catenin signaling pathway [8].
  • Here we show the existence of physical and functional interactions between beta-catenin and Sox9, a transcription factor that is required in successive steps of chondrogenesis [8].

Chemical compound and disease context of Chondrogenesis


Biological context of Chondrogenesis


Anatomical context of Chondrogenesis


Associations of Chondrogenesis with chemical compounds


Gene context of Chondrogenesis


Analytical, diagnostic and therapeutic context of Chondrogenesis


  1. Midkine is expressed during repair of bone fracture and promotes chondrogenesis. Ohta, S., Muramatsu, H., Senda, T., Zou, K., Iwata, H., Muramatsu, T. J. Bone Miner. Res. (1999) [Pubmed]
  2. Hypoxia and HIF-1alpha in chondrogenesis. Schipani, E. Semin. Cell Dev. Biol. (2005) [Pubmed]
  3. Regulation of growth plate chondrogenesis by bone morphogenetic protein-2. De Luca F, n.u.l.l., Barnes, K.M., Uyeda, J.A., De-Levi, S., Abad, V., Palese, T., Mericq, V., Baron, J. Endocrinology (2001) [Pubmed]
  4. Msx2 is a repressor of chondrogenic differentiation in migratory cranial neural crest cells. Takahashi, K., Nuckolls, G.H., Takahashi, I., Nonaka, K., Nagata, M., Ikura, T., Slavkin, H.C., Shum, L. Dev. Dyn. (2001) [Pubmed]
  5. Developmental toxicity of valproic acid during embryonic chick vertebral chondrogenesis. Basu, A., Wezeman, F.H. Spine. (2000) [Pubmed]
  6. SOX9 directly regulates the type-II collagen gene. Bell, D.M., Leung, K.K., Wheatley, S.C., Ng, L.J., Zhou, S., Ling, K.W., Sham, M.H., Koopman, P., Tam, P.P., Cheah, K.S. Nat. Genet. (1997) [Pubmed]
  7. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Wright, E., Hargrave, M.R., Christiansen, J., Cooper, L., Kun, J., Evans, T., Gangadharan, U., Greenfield, A., Koopman, P. Nat. Genet. (1995) [Pubmed]
  8. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Akiyama, H., Lyons, J.P., Mori-Akiyama, Y., Yang, X., Zhang, R., Zhang, Z., Deng, J.M., Taketo, M.M., Nakamura, T., Behringer, R.R., McCrea, P.D., de Crombrugghe, B. Genes Dev. (2004) [Pubmed]
  9. Glucose transport and metabolism in chondrocytes: a key to understanding chondrogenesis, skeletal development and cartilage degradation in osteoarthritis. Mobasheri, A., Vannucci, S.J., Bondy, C.A., Carter, S.D., Innes, J.F., Arteaga, M.F., Trujillo, E., Ferraz, I., Shakibaei, M., Martín-Vasallo, P. Histol. Histopathol. (2002) [Pubmed]
  10. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Liu, Z., Xu, J., Colvin, J.S., Ornitz, D.M. Genes Dev. (2002) [Pubmed]
  11. Abnormal ambient glucose levels inhibit proteoglycan core protein gene expression and reduce proteoglycan accumulation during chondrogenesis: possible mechanism for teratogenic effects of maternal diabetes. Leonard, C.M., Bergman, M., Frenz, D.A., Macreery, L.A., Newman, S.A. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  12. Dimerization of SOX9 is required for chondrogenesis, but not for sex determination. Bernard, P., Tang, P., Liu, S., Dewing, P., Harley, V.R., Vilain, E. Hum. Mol. Genet. (2003) [Pubmed]
  13. Down-regulation of nucleosomal binding protein HMGN1 expression during embryogenesis modulates Sox9 expression in chondrocytes. Furusawa, T., Lim, J.H., Catez, F., Birger, Y., Mackem, S., Bustin, M. Mol. Cell. Biol. (2006) [Pubmed]
  14. Connexin 40, a target of transcription factor Tbx5, patterns wrist, digits, and sternum. Pizard, A., Burgon, P.G., Paul, D.L., Bruneau, B.G., Seidman, C.E., Seidman, J.G. Mol. Cell. Biol. (2005) [Pubmed]
  15. Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling. Murtaugh, L.C., Chyung, J.H., Lassar, A.B. Genes Dev. (1999) [Pubmed]
  16. Idiopathic weight reduction in mice deficient in the high-mobility-group transcription factor Sox8. Sock, E., Schmidt, K., Hermanns-Borgmeyer, I., Bösl, M.R., Wegner, M. Mol. Cell. Biol. (2001) [Pubmed]
  17. Dual role of the basic helix-loop-helix transcription factor scleraxis in mesoderm formation and chondrogenesis during mouse embryogenesis. Brown, D., Wagner, D., Li, X., Richardson, J.A., Olson, E.N. Development (1999) [Pubmed]
  18. Early myotome specification regulates PDGFA expression and axial skeleton development. Tallquist, M.D., Weismann, K.E., Hellström, M., Soriano, P. Development (2000) [Pubmed]
  19. Thyroid hormone, insulin, and glucocorticoids are sufficient to support chondrocyte differentiation to hypertrophy: a serum-free analysis. Quarto, R., Campanile, G., Cancedda, R., Dozin, B. J. Cell Biol. (1992) [Pubmed]
  20. Cloning of a retinoic acid-sensitive mRNA expressed in cartilage and during chondrogenesis. Dietz, U.H., Sandell, L.J. J. Biol. Chem. (1996) [Pubmed]
  21. Opposing role of mitogen-activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. Oh, C.D., Chang, S.H., Yoon, Y.M., Lee, S.J., Lee, Y.S., Kang, S.S., Chun, J.S. J. Biol. Chem. (2000) [Pubmed]
  22. Calcineurin and NFAT4 induce chondrogenesis. Tomita, M., Reinhold, M.I., Molkentin, J.D., Naski, M.C. J. Biol. Chem. (2002) [Pubmed]
  23. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Akiyama, H., Chaboissier, M.C., Martin, J.F., Schedl, A., de Crombrugghe, B. Genes Dev. (2002) [Pubmed]
  24. Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. Zheng, Q., Zhou, G., Morello, R., Chen, Y., Garcia-Rojas, X., Lee, B. J. Cell Biol. (2003) [Pubmed]
  25. A mouse model for human short-stature syndromes identifies Shox2 as an upstream regulator of Runx2 during long-bone development. Cobb, J., Dierich, A., Huss-Garcia, Y., Duboule, D. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  26. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Yoon, B.S., Ovchinnikov, D.A., Yoshii, I., Mishina, Y., Behringer, R.R., Lyons, K.M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  27. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Sekiya, I., Vuoristo, J.T., Larson, B.L., Prockop, D.J. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  28. Requirement of the mouse I-mfa gene for placental development and skeletal patterning. Kraut, N., Snider, L., Chen, C.M., Tapscott, S.J., Groudine, M. EMBO J. (1998) [Pubmed]
  29. Sexually dimorphic and laterally asymmetric development of the embryonic duck syrinx: effect of estrogen on in vitro cell proliferation and chondrogenesis. Takahashi, M.M., Noumura, T. Dev. Biol. (1987) [Pubmed]
  30. Expression of N-cadherin and alkaline phosphatase in chick limb bud mesenchymal cells: regulation by 1,25-dihydroxyvitamin D3 or TGF-beta 1. Tsonis, P.A., Del Rio-Tsonis, K., Millan, J.L., Wheelock, M.J. Exp. Cell Res. (1994) [Pubmed]
  31. N-cadherin is not essential for limb mesenchymal chondrogenesis. Luo, Y., Kostetskii, I., Radice, G.L. Dev. Dyn. (2005) [Pubmed]
  32. Positionally-dependent chondrogenesis induced by BMP4 is co-regulated by Sox9 and Msx2. Semba, I., Nonaka, K., Takahashi, I., Takahashi, K., Dashner, R., Shum, L., Nuckolls, G.H., Slavkin, H.C. Dev. Dyn. (2000) [Pubmed]
WikiGenes - Universities